• 제목/요약/키워드: Otsu의 방법

검색결과 62건 처리시간 0.024초

이어핀 삽입 자동화 시스템을 위한 템플릿 매칭 기반 삽입 위치 판별 방법 (Hole Identification Method Based on Template Matching for the Ear-Pins Insertion Automation System)

  • 백종환;이재열;정명수;장민우;신동호;서갑호;홍성호
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권1호
    • /
    • pp.7-14
    • /
    • 2021
  • 장신구 산업은 인건비의 비중이 높고 노동자의 역량에 따라 제품의 제작 작업 시간 및 품질의 편차가 심하다. 이에 산업계의 수요에 맞추어 귀걸이 제품을 위한 실리콘 몰드 표면 지름 0.75mm 홀에 이어핀을 삽입하는 공정을 자동화하기 위하여 삽입 자동화 시스템이 연구되고 있다. 본 논문에서는 다양한 실리콘 몰드에 대한 이어핀 삽입 공정 자동화를 위하여 산업용 카메라를 이용한 이진화 및 템플릿 매칭 기법 기반의 이어핀 삽입 위치 검출 방법을 기술한다. 제안하는 방법은 입력 영상을 이진화와 템플릿 매칭을 이용하여 홀의 위치와 개수를 판단할 수 있다. 성능 시험을 통하여, 적용한 방법은 98.5%의 정확도와 Otsu 방법에 비해 0.5초 빠른 처리속도를 가지는 것을 보였다. 비전 기반 이어핀 삽입 자동화 시스템을 통해 원가 절감 및 작업 시간 절감과 생산성 향상에 기여할 수 있을 것이다.

저해상도 하수관거의 균열 탐지를 위한 영상처리 알고리즘 (Image Processing Algorithm for Crack Detection of Sewer with low resolution)

  • 손병직;전준용;허광희
    • 한국산학기술학회논문지
    • /
    • 제18권2호
    • /
    • pp.590-599
    • /
    • 2017
  • 국내에서 하수관로 탐사장치는 200만 화소 이상의 고해상도 디지털 카메라를 이용한 제품이 개발되어 있으나 30만 화소 이하의 장치가 대부분 사용되고 있다. 특히, 10만화소 이하의 장치가 아직도 많이 사용되고 있어, 영상처리를 위한 환경이 매우 열악하다. 본 연구에서 다루는 하수관 영상은 매우 저해상도($240{\times}320$ = 76,800화소)로 균열탐지가 매우 어렵다. 국내에서 이러한 저해상도 하수관거 영상이 대부분이기 때문에, 이를 연구대상으로 선택하였다. 이러한 저해상도 영상으로 하수 관거의 균열을 자동으로 탐지하는 기법을 디지털 영상처리 기술을 이용하여 연구하였다. 총8단계를 거쳐 균열을 자동으로 탐지하는 프로그램을 개발하였으며, 기본적으로 Matlab 프로그램의 함수를 이용하였다. 2단계에서 최적의 임계값을 찾는 알고리즘과 5단계에서 균열을 판단하는 알고리즘을 개발하였다. 2단계는 자막이 흰색이기 때문에 자막이 없는 원래 영상보다 Otsu's 임계값(threshold)이 높게 계산이 되는 점에 착안하여 Otsu 임계값을 시작으로 0.01씩 감소시키면서 최적의 임계값을 찾는 방법 알고리즘이며, 5단계는 길이가 10mm(40픽셀) 이상이고 폭이 1mm(4픽셀) 이상으로 판단하여, 균열을 탐지하는 알고리즘이다. 해석 결과 매우 저해상도 영상임에도 불구하고 균열 탐지 결과가 우수한 것으로 판단된다.

자동 임계값 추출 알고리즘과 KOMPSAT-3A를 활용한 무감독 변화탐지의 정확도 평가 (Accuracy Assessment of Unsupervised Change Detection Using Automated Threshold Selection Algorithms and KOMPSAT-3A)

  • 이승민;정종철
    • 대한원격탐사학회지
    • /
    • 제36권5_2호
    • /
    • pp.975-988
    • /
    • 2020
  • 변화탐지는 서로 다른 시점에 촬영된 영상에서 일어난 변화를 관측하는 기술로 위성영상을 활용한 원격탐사 분야에서 중요한 기술이다. 변화탐지 기법 중 하나인 무감독 변화탐지 기법은 단시간 내에 변화지역을 추출할 수 있는 장점을 지니지만, 임계값을 통해 변화된 지역을 이진영상으로 나타내기 때문에 토지피복변화를 파악하기 어렵다는 단점이 있다. 본 연구는 이러한 무감독 변화탐지의 단점을 보완하기 위해 공간정보를 기반으로 생성된 격자 포인트를 이용하여 위성영상의 토지피복변화 및 정확도 평가를 수행하였다. 변화탐지 알고리즘은 Spectral Angle Mapper(SAM)를 사용하였으며, 김제자유무역지역 일대를 촬영한 KOMPSAT-3A(K3A) 위성영상을 대상으로 진행하였다. 변화탐지결과는 자동 임계값 추출 알고리즘들 중 Otsu, Kittler, Kapur, Tsai 방법을 사용하여 이진영상으로 나타냈다. 또한, 변화탐지에 사용된 두 시점의 위성영상은 계절에 의한 식생 변화가 존재하기 때문에 확률밀도함수를 통한 Differenced Normalized Difference Vegetation Index(dNDVI)의 임계값으로 계절적 영향을 받는 지역을 제거하였다. 연구 결과, 자동 임계값 추출 알고리즘 중 Otsu와 Kapur의 정확도가 58.16%로 나타났고, dNDVI를 통해 계절적 영향을 제거하였을 때 85.47%로 정확도가 개선된 결과를 보였다. 본 연구결과를 기반으로 생성된 알고리즘은 무감독 변화탐지를 수행할 때 정확도 평가와 토지피복변화를 정량적으로 파악하여 기존의 단점을 보완할 수 있다고 판단된다.

Haar-like Feature 및 CLNF 알고리즘을 이용한 차량 번호판 인식 (A Vehicle License Plate Recognition Using the Haar-like Feature and CLNF Algorithm)

  • 박승현;조성원
    • 스마트미디어저널
    • /
    • 제5권1호
    • /
    • pp.15-23
    • /
    • 2016
  • 본 논문은 한국의 차량 번호판 인식에 효과적인 방법을 제안한다. 획득한 자동차 이미지로부터 Haar-Like Feature를 이용해 대략적인 번호판 후보 영역을 찾아낸 후, 랭크 필터를 사용하여 전처리를 하고 캐니 에지 추출 (Canny Edge Detecting) 알고리즘을 이용하여 연결된 사각형을 찾아 번호판을 추출한다. 추출된 번호판의 색상 정보를 이용하여 흰색/녹색 번호판을 구분하고, 각 번호판을 OTSU 이진화와 주변 전경 픽셀 전파 알고리즘인 CLNF (CCLUF with NFPP)을 통해 문자를 제외한 잡음을 제거하고 레이블링하여 숫자 및 문자 영역을 분리한다. 분리된 문자 영역은 메쉬 방법 및 세선화 후 X-Y 투영 방법으로 특징 벡터를 추출한다. 추출된 특징 벡터는 역전파 알고리즘을 사용하여 학습된 신경망을 이용하여 문자 인식을 수행한다. 제안된 차량 번호판 인식 알고리즘의 효과적 동작은 실험을 통해 확인하였다.

여현변환 계수를 이용한 이미지 탐색 알고리즘 (A Image Search Algorithm using Coefficients of The Cosine Transform)

  • 이석한
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.13-21
    • /
    • 2019
  • 내용기반 영상검색은 영상 내의 정보인 색상, 질감, 형태 등의 특징 값을 추출하여 검색에 이용한다. 본 논문에서는 $8{\times}8$ 이산여현변환, 즉 $8{\times}8$ DCT(Discrete Cosine Transform) 후 얻어지는 DC, AC계수를 이용하여 필터뱅크(filter-bank)를 생성하고, 이를 영상의 내용기반 검색에 이용하는 검색방법을 제안한다. 제안된 방법은 생성된 DCT 필터뱅크에서 DC성분과 주요한 AC성분인 AC01, AC10, AC11 만을 이용하며, DC성분에 대한 양자화를 수행하여 계산량을 최소화한다. 그리고 양자화된 DC성분에 대한 히스토그램 정보를 기반으로 영상 검색에 필요한 특징 값을 산출한다. AC성분에 대해서는 Otsu 이진화를 통하여 개괄적인 형태정보를 취득한 다음 이에 대한 수평/수직 방향으로의 투영 히스토그램을 계산하여 특징 값을 취득한다. 추출된 AC성분의 특징 값은 DC성분의 특징 값과 함께, 특징벡터 빈(feature vector bins)을 구성하여 검색을 수행한다. 실험은 1000장의 데이터베이스를 이용하여 수행 되었으며, 기존의 색상정보를 이용한 검색방법보다 우수한 성능을 보임을 확인하였다.

형태학적 특징을 이용한 초음파 영상에서의 자동 전립선 분할 (Automatic Prostate Segmentation from Ultrasound Images using Morphological Features)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.865-871
    • /
    • 2022
  • 본 논문에서는 전립선 초음파 영상에서 형태학적 특징을 이용하여 전립선 영역을 검출하는 방법을 제안한다. 제안된 방법의 첫 단계에서는 전립선 영역의 상단 경계선을 추출한다. 초음파 촬영으로 획득한 영상에서 히스토그램 정보를 이용해 명암대비를 조정하여 전립선 영역의 상단 경계선을 검출하기 위한 기준 객체들을 추출하고, 기준 객체들의 하단 경계선을 Monotone cubic spline 보간법을 적용하여 상단 경계선을 추출한다. 두 번째 단계에서는 전립선 초음파 영상에서 추출한 상단 경계선보다 아래에 위치한 영역에 대해 오츠 이진화를 적용하여 전립선 하단 경계선을 추출한다. 마지막으로 전립선 상단 경계선과 하단 경계선을 연결하여 전립선 영역을 추출한다. 수동으로 측정한 전립선 영역과 비교 분석한 결과, 전립선 초음파 영상이 갖는 형태학적 특징을 이용한 방법으로 전립선 영역을 추출할 수 있는 것을 확인하였다.

산업용 매니퓰레이터의 작업 성능 향상을 위한 영상 기반 물체 인식에 관한 연구 (Study on vision-based object recognition to improve performance of industrial manipulator)

  • 박인철;박종호;류지형;김형주;정길도
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.358-365
    • /
    • 2017
  • 본 논문에서는 산업용 매니퓰레이터의 작업 성능 향상을 위하여 영상 기반의 물체 인식 방법을 제안하였다. 기존 산업용 매니퓰레이터의 경우 대부분 산업 현장에서 제공하는 정보만을 활용해 산업용 매니퓰레이터를 동작시킴으로써 작업 물체 틀어짐 등에 대한 문제를 고려하지 않고 있기에 보다 안정적인 작업을 수행하는데 있어 문제점이 발생할 수 있다. 본 연구에서 사용된 물체인식 방법은 기존의 Harris Coner 알고리즘의 인식률 향상을 위하여 HSV채널로부터 색상정보를 포함한 V채널과 배경분리가 용이한 S채널을 분리 한 뒤 이를 바탕으로 Otsu Thresholding 기법을 적용하였다. 이를 통해 작업 물체를 보다 정확하게 인식하고 만약 작업 물체가 외부요인에 의하여 정확한 위치에 놓여있지 않거나 뒤틀어져 있는 경우 신속하게 확인한 후 원활한 작업을 위해 산업용 매니퓰레이터의 동작 제어를 수행하는 것으로 실제 산업용 매니퓰레이터에 적용한 후 실험을 통하여 이를 검증하였다. 이는 실제 공장 시스템에서 갑작스런 사람의 유입 혹은 외부요인에 의한 작업 물체의 변화 등의 문제점에 대하여 강인하고 유연하게 대처하며 오류로 인한 작업공정의 중단을 사전에 방지함으로서 전체시스템 가동시간의 효율성을 증대시키는 결과를 가져올 수 있다.

텍스쳐 기반 BP 신경망을 이용한 위성영상의 도로영역 추출 (Effective Road Area Extraction in Satellite Images Using Texture-Based BP Neural Network)

  • 서정;김보람;오준택;김욱현
    • 융합신호처리학회논문지
    • /
    • 제10권3호
    • /
    • pp.164-169
    • /
    • 2009
  • 본 논문에서는 고해상도 위성영상에 대해서 분할된 후보영역의 텍스처 정보를 기반으로 BP 신경회로망을 이용한 도로영역검출방법을 제안한다. 먼저, N.Otsu가 제안한 히스토그램 기반의 이진화와 열림연산을 수행하여 배경영역으로부터 일차적으로 도로영역인 전경부분을 분할한다. 그리고 전경부분의 색상 히스토그램을 이용하여 주요색상을 추출한 후 ${\pm}25$ 범위 이내에 있는 영역을 도로영역 후보를 검출한다. 마지막으로, 분할된 후보 도로영역에 대해서 동시발생행렬을 이용하여 텍스처 정보를 추출한 후 BP 신경회로망을 이용하여 최종적인 도로영역을 검출한다. 제안한 방법은 도로영역이 일정한 밝기값과 형태를 가진다는 사실에 착안한 것으로, 실험에서 다양한 위성영상들을 대상으로 평균 90% 이상의 검출율을 보여 그 유효함을 보였다.

  • PDF

메쉬 및 세선화 기반 특징 벡터를 이용한 차량 번호판 인식 (A Vehicle License Plate Recognition Using the Feature Vectors based on Mesh and Thinning)

  • 박승현;조성원
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.705-711
    • /
    • 2011
  • 본 논문은 산업응용을 목표로 효과적인 차량 번호판 인식 알고리즘을 제안한다. 자동차 이미지를 얻은뒤 캐니 에지 추출(Canny Edge Detecting) 알고리즘을 이용하여 연결된 사각형을 찾아 번호판을 추출한다. 추출된 번호판의 색상 정보를 이용하여 흰색/녹색 번호판을 구분하고, 각 번호판을 OTSU 이진화와 주변 전경 픽셀 전파 알고리즘인 CLNF (CCLUF with NFPP)을 통해 문자를 제외한 잡음을 제거하고 레이블링하여 숫자 및 문자 영역을 분리한다. 분리된 문자 영역은 메쉬 방법 및 세선화 후 X-Y 투영 방법으로 특징 벡터를 추출한다. 추출된 특징 벡터는 역전파 신경망으로 미리 학습된 가중치 값과 비교되며, 최종 문자 인식을 수행한다. 제안된 차량 번호판 인식 알고리즘의 효과적 동작은 실험을 통해 확인하였다.

운송 컨테이너 영상의 효율적인 문자인식을 위한 전처리에 관한 연구 (A Study on Preprocessing for Efficient Character Recognization of Shipping Container Image)

  • 최재영;김낙빈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 제13회 춘계학술대회 및 임시총회 학술발표 논문집
    • /
    • pp.1077-1083
    • /
    • 2000
  • 본 논문은 운송 컨테이너 식별자의 자동화 처리를 위한 문자 인식의 단계중 최종 문자 인식 전단계 까지의 처리 과정을 컨테이너의 특성에 맞게 제안하였으며, 이러한 전처리 과정은 문자 인식 시스템의 성능에 중요한 영향을 미친다. 제안한 방법은 먼저 입력된 컨테이너 컬러 영상을 명암 영상으로 바꾸고 전체 영상중 인식에 필요한 식별자 영역만을 경계선 검출과 형태학적 연산을 이용하여 추출한다. 이어서 다양한 배경색과 문자색을 판단하여 일반 문서와 같이 일관성있게 통일한 후, DCT를 이용한 명암도별 이진영역으로 분할한 후에 Otsu방법과 새로운 이진화방법을 자동으로 선택하여 효율적인 이진화가 이루어지도록 하였다. 이렇게 얻어진 이진 영상은 문자인식 단계로 넘어갈 수 있도록 개별 문자로 분할한다. 이 방법은 컨테이너 영상의 불균등한 배경색과 잡음으로 인하여 문자인식에 오류가 생기는 단점을 보완하였으며 컨테이너 특성을 최대한 반영함으로써 효과적인 전처리 결과를 얻을 수 있었다. 또한, 제안한 방법의 응용은 컨테이너 이외의 다른 상황에서도 매우 효과적으로 사용될 수 있으리라 본다.

  • PDF