• Title/Summary/Keyword: Otsu의 방법

Search Result 62, Processing Time 0.019 seconds

IR Image Segmentation using GrabCut (GrabCut을 이용한 IR 영상 분할)

  • Lee, Hee-Yul;Lee, Eun-Young;Gu, Eun-Hye;Choi, Il;Choi, Byung-Jae;Ryu, Gang-Soo;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.260-267
    • /
    • 2011
  • This paper proposes a method for segmenting objects from the background in IR(Infrared) images based on GrabCut algorithm. The GrabCut algorithm needs the window encompassing the interesting known object. This procedure is processed by user. However, to apply it for object recognition problems in image sequences. the location of window should be determined automatically. For this, we adopted the Otsu' algorithm for segmenting the interesting but unknown objects in an image coarsely. After applying the Otsu' algorithm, the window is located automatically by blob analysis. The GrabCut algorithm needs the probability distributions of both the candidate object region and the background region surrounding closely the object for estimating the Gaussian mixture models(GMMs) of the object and the background. The probability distribution of the background is computed from the background window, which has the same number of pixels within the candidate object region. Experiments for various IR images show that the proposed method is proper to segment out the interesting object in IR image sequences. To evaluate performance of proposed segmentation method, we compare other segmentation methods.

The Color Polarity Method for Binarization of Text Region in Digital Video (디지털 비디오에서 문자 영역 이진화를 위한 색상 극화 기법)

  • Jeong, Jong-Myeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.21-28
    • /
    • 2009
  • Color polarity classification is a process to determine whether the color of text is bright or dark and it is prerequisite task for text extraction. In this paper we propose a color polarity method to extract text region. Based on the observation for the text and background regions, the proposed method uses the ratios of sizes and standard deviations of bright and dark regions. At first, we employ Otsu's method for binarization for gray scale input region. The two largest segments among the bright and the dark regions are selected and the ratio of their sizes is defined as the first measure for color polarity classification. Again, we select the segments that have the smallest standard deviation of the distance from the center among two groups of regions and evaluate the ratio of their standard deviation as the second measure. We use these two ratio features to determine the text color polarity. The proposed method robustly classify color polarity of the text. which has shown by experimental result for the various font and size.

Musical Score Recognition with SOM and Enhanced ART-1 (SOM과 개선된 ART-1을 이용한 악보 인식)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1064-1069
    • /
    • 2013
  • In this paper, we propose a Musical Score Recognition with SOM and Enhanced ART-1 Algorithm. First, we apply Hough transform and Otsu's binarization to the original BMP format image and extract notes from separated passages by histogram analysis with removing staff lines. Then extracted musical notes are normalized to same size by SOM algorithm and ART-1 algorithm plays the learning and recognition role. The experiment verifies that the proposed method is quite effective on printed musical score recognition.

Automatic Method for Extracting Homogeneity Threshold and Segmenting Homogeneous Regions in Image (영상의 동질성 문턱 값 추출과 영역 분할 자동화 방법)

  • Han, Gi-Tae
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.363-374
    • /
    • 2010
  • In this paper, we propose the method for extracting Homogeneity Threshold($H_T$) and for segmenting homogeneous regions by USRG(Unseeded Region Growing) with $H_T$. The $H_T$ is a criterion to distinguish homogeneity in neighbor pixels and is computed automatically from the original image by proposed method. Theoretical background for proposed method is based on the Otsu's single level threshold method. The method is used to divide a small local part of original image int o two classes and the sum($\sigma_c$) of standard deviations for the classes to satisfy special conditions for distinguishing as different regions from each other is used to compute $H_T$. To find validity for proposed method, we compare the original image with the image that is regenerated with only the segmented homogeneous regions and show up the fact that the difference between two images is not exist visually and also present the steps to regenerate the image in order the size of segmented homogeneous regions and in order the intensity that includes pixels. Also, we show up the validity of proposed method with various results that is segmented using the homogeneity thresholds($H^*_T$) that is added a coefficient ${\alpha}$ for adjusting scope of $H_T$. We expect that the proposed method can be applied in various fields such as visualization and animation of natural image, anatomy and biology and so on.

Quantitative Assessment Technology of Small Animal Myocardial Infarction PET Image Using Gaussian Mixture Model (다중가우시안혼합모델을 이용한 소동물 심근경색 PET 영상의 정량적 평가 기술)

  • Woo, Sang-Keun;Lee, Yong-Jin;Lee, Won-Ho;Kim, Min-Hwan;Park, Ji-Ae;Kim, Jin-Su;Kim, Jong-Guk;Kang, Joo-Hyun;Ji, Young-Hoon;Choi, Chang-Woon;Lim, Sang-Moo;Kim, Kyeong-Min
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 2011
  • Nuclear medicine images (SPECT, PET) were widely used tool for assessment of myocardial viability and perfusion. However it had difficult to define accurate myocardial infarct region. The purpose of this study was to investigate methodological approach for automatic measurement of rat myocardial infarct size using polar map with adaptive threshold. Rat myocardial infarction model was induced by ligation of the left circumflex artery. PET images were obtained after intravenous injection of 37 MBq $^{18}F$-FDG. After 60 min uptake, each animal was scanned for 20 min with ECG gating. PET data were reconstructed using ordered subset expectation maximization (OSEM) 2D. To automatically make the myocardial contour and generate polar map, we used QGS software (Cedars-Sinai Medical Center). The reference infarct size was defined by infarction area percentage of the total left myocardium using TTC staining. We used three threshold methods (predefined threshold, Otsu and Multi Gaussian mixture model; MGMM). Predefined threshold method was commonly used in other studies. We applied threshold value form 10% to 90% in step of 10%. Otsu algorithm calculated threshold with the maximum between class variance. MGMM method estimated the distribution of image intensity using multiple Gaussian mixture models (MGMM2, ${\cdots}$ MGMM5) and calculated adaptive threshold. The infarct size in polar map was calculated as the percentage of lower threshold area in polar map from the total polar map area. The measured infarct size using different threshold methods was evaluated by comparison with reference infarct size. The mean difference between with polar map defect size by predefined thresholds (20%, 30%, and 40%) and reference infarct size were $7.04{\pm}3.44%$, $3.87{\pm}2.09%$ and $2.15{\pm}2.07%$, respectively. Otsu verse reference infarct size was $3.56{\pm}4.16%$. MGMM methods verse reference infarct size was $2.29{\pm}1.94%$. The predefined threshold (30%) showed the smallest mean difference with reference infarct size. However, MGMM was more accurate than predefined threshold in under 10% reference infarct size case (MGMM: 0.006%, predefined threshold: 0.59%). In this study, we was to evaluate myocardial infarct size in polar map using multiple Gaussian mixture model. MGMM method was provide adaptive threshold in each subject and will be a useful for automatic measurement of infarct size.

Region Segmentation from MR Brain Image Using an Ant Colony Optimization Algorithm (개미 군집 최적화 알고리즘을 이용한 뇌 자기공명 영상의 영역분할)

  • Lee, Myung-Eun;Kim, Soo-Hyung;Lim, Jun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.195-202
    • /
    • 2009
  • In this paper, we propose the regions segmentation method of the white matter and the gray matter for brain MR image by using the ant colony optimization algorithm. Ant Colony Optimization (ACO) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. This algorithm finds the expected pixel for image as the real ant finds the food from nest to food source. Then ants deposit pheromone on the pixels, and the pheromone will affect the motion of next ants. At each iteration step, ants will change their positions in the image according to the transition rule. Finally, we can obtain the segmentation results through analyzing the pheromone distribution in the image. We compared the proposed method with other threshold methods, viz. the Otsu' method, the genetic algorithm, the fuzzy method, and the original ant colony optimization algorithm. From comparison results, the proposed method is more exact than other threshold methods for the segmentation of specific region structures in MR brain image.

An Adaptive Multi-Level Thresholding and Dynamic Matching Unit Selection for IC Package Marking Inspection (IC 패키지 마킹검사를 위한 적응적 다단계 이진화와 정합단위의 동적 선택)

  • Kim, Min-Ki
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.245-254
    • /
    • 2002
  • IC package marking inspection system using machine vision locates and identifies the target elements from input image, and decides the quality of marking by comparing the extracted target elements with the standard patterns. This paper proposes an adaptive multi-level thresholding (AMLT) method which is suitable for a series of operations such as locating the target IC package, extracting the characters, and detecting the Pinl dimple. It also proposes a dynamic matching unit selection (DMUS) method which is robust to noises as well as effective to catch out the local marking errors. The main idea of the AMLT method is to restrict the inputs of Otsu's thresholding algorithm within a specified area and a partial range of gray values. Doing so, it can adapt to the specific domain. The DMUS method dynamically selects the matching unit according to the result of character extraction and layout analysis. Therefore, in spite of the various erroneous situation occurred in the process of character extraction and layout analysis, it can select minimal matching unit in any environment. In an experiment with 280 IC package images of eight types, the correct extracting rate of IC package and Pinl dimple was 100% and the correct decision rate of marking quality was 98.8%. This result shows that the proposed methods are effective to IC package marking inspection.

An α-cut Automatic Set based on Fuzzy Binarization Using Fuzzy Logic (퍼지논리를 이용한 α-cut 자동 설정 기반 퍼지 이진화)

  • Lee, Ho Chang;Kim, Kwang Baek;Park, Hyun Jun;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2924-2932
    • /
    • 2015
  • Image binarization is a process to divide the image into objects and backgrounds, widely applied to the fields of image analysis and its recognition. In the existing method of binarization, there is some uncertainty when there is insufficient brightness gap between objects and backgrounds in setting threshold. The method of fuzzy binarization has improved the features of objects efficiently. However, since this method sets ${\alpha}$-cut value statically, there remain some problems that important features of objects can be lost during binarization. Therefore, in this paper, we propose a binarization method which does not set ${\alpha}$-cut value statically. The proposed method uses fuzzy membership functions calculated by thresholds of mean, iterative, and Otsu binarization. Experiment results show the proposed method binaries various images with less loss than the existing methods.

Development of The Flexible User-Friendly Real-Time Machine Vision Inspection System (사용자 중심의 유연한 실시간 머신비전 검사시스템 개발)

  • Cho, In-Sung;Lee, Ji-Hong;Oh, Sang-Jin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.42-50
    • /
    • 2008
  • We developed a visual inspection system for detecting defective products. Most existing inspection systems are designed to be dedicated to one product, which makes operator spend extra money and time to adopt other products. In this work, we propose a flexible visual inspection system that can inspect various products without any additional major job at a low-cost. The developed system contained image processing algorithm libraries and user-friendly graphic interface for adaptable image-based inspection system. We can find a proper threshold value using the proposed algorithm which uses correlation coefficient between a non-defective product and existing sample images of defective product. And We tested the performance of the proposed algorithm using Otsu's method. The proposed system is applied to a automated inspection line for cellular phone.

Lane Detection based Open-Source Hardware according to Change Lane Conditions (오픈소스 하드웨어 기반 차선검출 기술에 대한 연구)

  • Kim, Jae Sang;Moon, Hae Min;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • Recently, the automotive industry has been studied about driver assistance systems for helping drivers to drive their cars easily by integrating them with the IT technology. This study suggests a method of detecting lanes, robust to road condition changes and applicable to lane departure warning and autonomous vehicles mode. The proposed method uses the method of detecting candidate areas by using the Gaussian filter and by determining the Otsu threshold value and edge. Moreover, the proposed method uses lane gradient and width information through the Hough transform to detect lanes. The method uses road lane information detected before to detect dashed lines as well as solid lines, calculates routes in which the lanes will be located in the next frame to draw virtual lanes. The proposed algorithm was identified to be able to detect lanes in both dashed- and solid-line situations, and implement real-time processing where applied to Raspberry Pi 2 which is open source hardware.