스레쉬홀딩(thresholding)은 영상 화소의 군집이나 강도를 이용하여 영상을 분할하는 기본 기술이다. Otsu의 스레쉬홀딩 방법에서는 정규화 된 히스토그램을 이산 밀도함수로 보아 화소의 클래스 간 분산을 최대화시키는 판별식을 이용한다. 그러나 Otsu의 방법에서는 여러 객체로 이루어진 영상에서 최적의 스레쉬홀드를 찾기 위하여 그레이레벨 전 구간에 대해 모든 가능한 분산 값을 반복적으로 계산해 보아야 하기 때문에 계산 시간이 길게 걸리는 문제가 있다. 본 논문에서는 Otsu의 방법을 개선하여 간단하지만 고속으로 멀티-레벨의 스레쉬홀드 값을 구할 수 있는 방법을 제안한다. 전체 그레이 구간 영역에 대하여 Otsu의 방법을 적용시키기 보다는 먼저 그레이 영역을 작은 부분-구간으로 나눈 다음 Otsu의 방법을 적용시키는 처리를 반복하여 원하는 개수의 스레쉬홀드를 구하는 방법이다. 본 제안 방법에서는 맨 처음 대상 영상의 그레이 구간을 2부류로 나눈다. 이 때, 분할을 위한 스레쉬홀드는 전 구간을 대상으로 Otsu의 방법을 적용하여 구한다. 그 다음에는 전체 구간이 아닌 분할된 부분-구간을 대상으로 Otsu의 방법을 적용하여 두 부류를 4부류로 나눈다. 이와 같은 처리를 원하는 개수의 스레쉬홀드를 얻을 때 까지 반복한다. 세 종류 벤취마크 영상과 50개 얼굴영상에 대해 실험한 결과, 제안 방법은 대상 영상을 특성에 맞게 고속으로 잘 분할하였으며, 패턴 매칭이나 얼굴인식에 이용될 수 있는 가능성을 확인하였다.
본 논문에서는 변형 Otsu 이진화 방법과 Hu 모멘트를 기반으로 밝기, 명암도, 크기, 회전, 위치 변화에 강인한 얼굴 인식 방법을 제안한다. 제안하는 변형 Otsu 이진화 방법은 기존의 Otsu 이진화 방법으로부터 또 다른 문턱치 값을 결정하고 이로부터 얻어진 이진 얼굴 영상 2개를 사용함으로써 이진 영상 하나보다 고차원의 특징벡터를 추출할 수 있고, 기존의 Otsu 이진화 방법과 마찬가지로 밝기 및 명암도 변화에 강인한 속성을 가지고 있다. 특징 값으로는 Hu 모멘트를 사용함으로써 크기, 회전, 위치 변화에 강인한 특성을 추가로 가지고 있다 기존의 주요 성분 분석(Principal Component Analysis, PCA) 방법과 제안한 방법을 비교 실험한 결과, 위에서 언급한 5가지 다양한 환경 변화에 대하여 PCA 방법의 평균 인식률은 olivetti Research Laboratory (ORL) 데이터베이스와 AR 데이터베이스에 대해서 각각 68.4%와 51.2%이고, 제안한 방법의 평균 인식률은 각각 93.2%와 81.4%로서 제안한 방법의 인식 성능이 우수함을 확인하였다.
영상 분할 (Image Segmentation)은 패턴 인식, 환경 인식, 문서 분석을 위한 영상 처리 과정에서 가장 기본적인 단계이다. 영상 분할 방법들 중 Otsu의 영상의 정규화된 히스토그램의 분포 정보를 이용하여 클래스 간의 분산을 최대화 시키는 임계치값을 결정하는 자동 임계치값 선정방법이 가장 잘 알려진 방법이다. Otsu의 방법은 영상의 전 영역에 대한 히스토그램을 분석함으로써 영상의 부분적인 특성을 반영하여 임계치값을 결정하기는 어렵다. 본 논문에서는 이 어려움 해소하기 위하여 Context Fuzzy c-Means 알고리즘을 이용하여 영상을 여러 개의 부분 영역으로 나누고, 정의된 부 영역에 영상 분할 기법을 적용함으로써 부 영역들에 적합한 여러 개의 임계치값을 계산함으로써 영상 분할 성능을 개선하고자 하였다.
이미지로부터 중요 객체를 추출하는 것은 추적, 분할, 적응적 압축, 내용기반 검색과 같은 멀티미디어 처리에 있어서 매우 중요한 부분이며, 현재 이에 관한 많은 연구가 진행 되고 있다. 중요 객체 추출을 위한 방법으로 Saliency Map을 이용한 방법이 있다. 이 방법에서는 일반적으로 이진화된 Saliency Map을 이용하여 어떤 화소가 중요 객체 내부인가 아닌가를 표시한다. 따라서 이 방법은 이진화를 위한 임계값의 선택이 성능에 매우 중요한 영향을 끼친다. 기존 연구에서는 일반적으로 휴리스틱 방법을 이용하여 임계값을 결정하거나 매개변수로 임계값을 조정하는 방법이 사용되었다. 그러나 하나의 임계값 적용은 이미지 안의 다수의 객체가 포함되어 있는 경우 적합하지 않다. 본 논문에서는 이러한 단점을 개선할 수 있는 Otsu 임계값을 이용한 전역적인 최적 임계값을 사용하는 방법을 제안한다. 제안하는 Otsu 임계화 방법은 단일-계층에 적용할 수 있는 Otsu 방법과 이를 확장하여 다중-계층에도 적용할 수 있는 Otsu 방법이다. 제안한 방법을 기존의 Saliency Map 모델에 적용한 결과 성능이 개선되었음을 확인하였다.
영상분할은 영상 처리 및 패턴 인식에서 매우 어려운 전처리 과정 중 하나이다. 일반적으로는 단순하고 구현이 쉽기 때문에 OTSU의 방법이 많이 사용되고 있지만, 영상의 히스토그램이 단일 분포를 갖거나 단일 분포에 가까울 경우에는 영상 분할이 정확히 되지 못한다. 또한, 만일 표적이 영상에 비해서 소형인 경우 표적의 히스토그램 분포가 작아져서 단일 분포에 가까워진다. 본 논문에서는 소형 표적 검출을 위한 개선된 영상 분할 기법을 제안하였다. 단일 분포 히스토그램의 단점을 극복하기 위하여 배경 히스토그램의 영향을 감소시키는 기법을 적용하였으며, SNR을 높이기 위하여 지역 평균화 기법을 1D OTSU에 적용하였다. 실제 열 영상을 기반으로 실험을 수행한 결과 2D OTSU 방법에 비해서 연산 시간은 크게 줄었으며, 영상 분할 결과는 개선되었음을 확인하였다.
영상분할에 사용되는 문턱치 처리 방법들 중 Otsu 방법은 클래스 내 분산(within-class variance)을 이용하여 최적의 문턱치를 자동으로 추정한다. 이때, Otsu 방법은 각 클래스(class)의 통계적 분포를 표현함에 있어 분산을 사용하며, 이러한 분산은 평균으로부터 해당 자료까지의 거리 제곱으로 표현된다. 그 결과, Otsu 방법의 최적 문턱치는 분산의 크기에 큰 영향을 받으며, 분산들 중 크기가 큰 쪽으로 편향되는 문제점을 보인다. 이에 본 논문은 분산을 표준편차로 변경함으로써 이러한 현상을 감소시켰으며, 보다 정확한 문턱치를 추정할 수 있었다. 본 논문은 기존의 클래스 분산(class variance)을 클래스 표준편차(class standard deviation)로 대체하였으며, 문턱치 선택 기준으로서 클래스 내 표준편차(within-class standard deviation)을 제안하였다. 타당성을 검증하기 위해 두 개의 정규분포 히스토그램(histogram) 및 음영이 있는 영상들에 대해 모의실험을 수행하였으며, 제안된 방법을 Otsu 방법 및 기존의 방법들과 비교하였다. 또한, 객관적 성능평가(Misclassification Error)를 통해 제안된 방법의 우수성을 확인하였다.
임계값을 이용한 영상 분할은 대표적인 영상 분할 기법으로 Otsu의 임계값 결정법, Fuzzy 엔트로피를 이용한 H&W의 기법 및 Clustering을 이용한 Kwon의 기법 등 많은 방법이 있다. 대부분의 임계값 결정 기법은 영상에서 얻어진 빈도수 히스토그램의 분석을 통해서 임계값을 결정한다. 특히 Otsu의 임계값 결정 기법은 빈도수 히스토그램의 분산을 최대화하는 방법으로 임계값을 결정하는 빈도수 히스토그램에 기반한 대표적 기법이다. 하지만 영상 기술이 발전함에 따라서 하나의 임계값으로부터 영상을 이진화 하는 기법은 효용성이 떨어지고 있다. 따라서 다중의 임계값을 결정하는 효과적인 방법이 필요하다. 본 논문에서는 그레이 레벨간의 관계성을 파악하고 이러한 관계성으로부터 다중의 임계값을 결정하는 기법을 제안한다. 제안된 기법의 효용성은 모의실험에서 다중 임계값을 사용한 분할영상을 통해서 보인다.
클러스터링을 이용한 대표적인 영상 분할 방법으로 Fuzzy C-Means(FCM) 알고리즘을 많이 사용하는데, FCM은 영상의 공간을 픽셀 값이 비슷한 클러스터 영역으로 분할하므로 분할 시간이 많이 소요된다. 특히 웹이 보편화된 현재 사용자들의 다양한 패턴을 분석하기 위한 처리 속도 문제는 더욱 중요하다. 이러한 속도 문제를 해결하기 위해 본 논문에서는 Otsu의 영상 히스토그램의 임계값과 FCM으로 영상을 분할하는 개선된 FCM(Improved FCM : IFCM) 알고리즘을 제안한다. 제안방법은 Otsu의 클래스 간의 분산을 최대화 시키는 임계값을 결정하여 FCM에 적용하고 영상을 분할하였다. IFCM은 기존의 FCM에 비해 영상 분할 시간을 단축시켜 성능이 향상되었음을 실험을 통해 보인다.
의료 영상 분야에서 영상의 분할 및 특성의 추출을 위하여 명암도 차이를 이용하는 방법이 널리 사용되고 있으며, 임계값을 결정한 뒤 이를 기준으로 영상을 이진화하는 임계값 방식이 잘 알려져 있다. 임계값 방식 중 자주 사용되는 방식이 임계값을 선택하는 데 효율적이면서, 효과적인 선정 기준을 제시하고 있는 Otsu 알고리즘이다. 하지만 흉부 X-ray 영상에 대해서는 Otsu 알고리즘의 적용으로 좋은 영상 분할 결과를 얻을 수 없다. 이는 폐 영역 주변에는 갈비뼈나 혈관과 같은 다양한 기관이 존재하여 따라서 명암도 레벨의 분포가 불명확하기 때문이다. 이러한 불명료성을 개선하기 위하여, 본 논문에서는 X-ray 영상의 배경을 배제한 후 Otsu 알고리즘을 적용하고, 명암 레벨 지도를 생성한 후, 이를 이용하여 X-ray 영상을 분할하는 효과적인 폐 영역 추출 알고리즘을 제시한다. 제안한 방법의 효과를 검증하기 위해 제안한 방법과 기존의 1차원 및 2차원 Otsu 알고리즘, 그리고 전문가의 육안 분할 결과와 비교하였다. 실험 결과, 제안한 방법이 기존 Otsu 방법에 비해 더 정확하게 폐 영역을 추출하였으며, 육안 분할 결과와 거의 비슷한 결과를 보여 주었다.
본 논문에서는 프레임 블록화와 Otsu 임계값 설정 방법을 이용한 샷 전환 탐지 알고리즘을 제안한다. 제안 방법은 연속된 두 프레임을 일정 크기의 영역으로 분할하여 두 프레임 간 대응되는 영역의 히스토그램 차이를 이용해 샷 전환을 탐지한다. 또한 각 영상마다 Otsu 임계값 설정 방법을 이용하여 자동으로 임계값을 설정한다. 제안 방법의 실험은 영화, 드라마, 애니메이션 등 다양한 영상에 대해 테스트되었으며, 기 연구된 샷 전환 탐지 알고리즘과 비교 시 우수한 탐지율을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.