• 제목/요약/키워드: Othello game

검색결과 6건 처리시간 0.022초

ANN 기반 기보학습 및 Minimax 탐색 알고리즘을 이용한 오델로 게임 플레이어의 구현 (An Implementation of Othello Game Player Using ANN based Records Learning and Minimax Search Algorithm)

  • 전영진;조영완
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1657-1664
    • /
    • 2018
  • This paper proposes a decision making scheme for choosing the best move at each state of game in order to implement an artificial intelligence othello game player. The proposed decision making scheme predicts the various possible states of the game when the game has progressed from the current state, evaluates the degree of possibility of winning or losing the game at the states, and searches the best move based on the evaluation. In this paper, we generate learning data by decomposing the records of professional players' real game into states, matching and accumulating winning points to the states, and using the Artificial Neural Network that learned them, we evaluated the value of each predicted state and applied the Minimax search to determine the best move. We implemented an artificial intelligence player of the Othello game by applying the proposed scheme and evaluated the performance of the game player through games with three different artificial intelligence players.

사례 기반 추론법을 이용한 오델로 게임 개발에 관한 연구 (A Study on the Image Search System using Mobile Internet)

  • 송은지
    • 디지털콘텐츠학회 논문지
    • /
    • 제12권2호
    • /
    • pp.217-223
    • /
    • 2011
  • 인공지능(AI : Artificial Intelligence)은 지능을 만들 수 있는 방법론이나 실현 가능성 등을 연구하는 컴퓨터 공학 및 정보기술과학 분야이다. 오델로(Othello) 게임은 다른 게임에 비해 규칙이 간단하며 $8{\times}8$인 제한적인 공간에서 이루어지기 때문에 AI로 제작되는 사례가 많다. 기존의 알고리즘은 추후에 발생하는 모든 경우의 수를 탐색하거나 룰을 이용하여 처리하기 때문에 처리시간이 오래 걸리며 새로운 상황에 대처하는데 효율적이지 않다. 본 연구에서는 이런 단점을 보안하고자 오델로 게임에 AI의 한 분야인 사례기반추론(CBR : Case-based Reasoning)알고리즘을 도입한다. CBR알고리즘 이란 주어진 문제를 해결하기 위해 과거에 있었던 유사한 문제를 검색하여 상황에 맞는 해결방법을 제시하는 방식을 의미한다. 지금까지 오델로 게임에 여러가지 AI기술을 이용하였으나 CBR알고리즘을 적용한 사례가 없었다. 본 연구에서는 CBR알고리즘을 오델로 게임에 적용하여 보다 빠른 연산속도로 다음 작업을 처리할 수 있으며 기존의 사례가 충분할 때는 새로운 상황에 효율적으로 대처할 수 있을 뿐 아니라 사용자로 하여금 보다 어려운 오델로 게임을 만들 수 있는 시스템을 제안한다.

CNN 기반 기보학습 및 강화학습을 이용한 인공지능 게임 에이전트 (An Artificial Intelligence Game Agent Using CNN Based Records Learning and Reinforcement Learning)

  • 전영진;조영완
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1187-1194
    • /
    • 2019
  • 본 논문에서는 인공지능 오델로 게임 에이전트를 구현하기 위해 실제 프로기사들의 기보를 CNN으로 학습시키고 이를 상태의 형세 판단을 위한 근거로 삼아 최소최대탐색을 이용해 현 상태에서 최적의 수를 찾는 의사결정구조를 사용하고 이를 발전시키고자 강화학습 이론을 이용한 자가대국 학습방법을 제안하여 적용하였다. 본 논문에서 제안하는 구현 방법은 기보학습의 성능 평가 차원에서 가치평가를 위한 네트워크로서 기존의 ANN을 사용한 방법과 대국을 통한 방법으로 비교하였으며, 대국 결과 흑일 때 69.7%, 백일 때 72.1%의 승률을 나타내었다. 또한 본 논문에서 제안하는 강화학습 적용 결과 네크워크의 성능을 강화학습을 적용하지 않은 ANN 및 CNN 가치평가 네트워크 기반 에이전트와 비교한 결과 각각 100%, 78% 승률을 나타내어 성능이 개선됨을 확인할 수 있었다.

면역알고리즘을 이용한 오델로 게임전략 탐색 (The search of the Othello game strategies using the immune algorithm)

  • 이근혜;강태원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.598-600
    • /
    • 2004
  • 기존의 연구 논문 중 비결정론적인 알고리즘인 유전자 알고리즘이나 인공신경망 등을 오델로 게임에 적용하여 자동학습을 시킨 예는 많으나 면역알고리즘을 모델로 게임에 적용한 예는 찾기가 어렵다 본 논문에서는 생리학의 면역시스템의 특징을 그대로 적용한 면역알고리즘을 모델로 게임에 적용하여 게임전략 생성에 관하여 연구한다. 생리학의 면역시스템은 자기조절능력이 있다는 외과 재 감염시 빠르게 대응할 수 있다는 특징이 있다. 면역알고리즘을 이용하여 탐색된 전략을 유전자알고리즘 그리고 기존에 연구되어진 게임전략 등과 실험하여 그 결과를 비교.연구한 결과 면역알고리즘을 적용하여 탐색된 모델로 게임전략이 가장 높은 승률을 보인다.

  • PDF

강화학습 기반의 지능형 게임에 관한 연구 (A Study on the Intelligent Game based on Reinforcement Learning)

  • 우종우;이동훈
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.17-25
    • /
    • 2006
  • 인공지능 기법을 이용한 컴퓨터 게임에 대한 학술적 연구는 오랫동안 이루어져 왔으며 주로 게임에 대한 숙련도를 높여서 인간에게 승리하는 것이 주요 연구 목적이었다. 그러나 최근의 상업용 게임에서는 게임의 흥미를 제공하기 위해서 사용자의 적응을 목적으로 개발하고 있다. 본 논문에서는 기존의 강화학습알고리즘을 수정하여 사용자 적응에 중점을 둔 적응형 강화 학습 알고리즘을 제안하였다. 실험대상으로는 많은 상태공간을 가진 오델로 게임을 대상영역으로 하여 시스템을 설계 및 구현하였다. 시스템의 성능측정은 두개의 강화학습 알고리즘이 각각 Min-Max 알고리즘과 대결하는 방식으로 실험을 하였으며, 결과는 기존의 강화 학습 알고리즘과의 대결에서도 향상된 학습율을 나타내었다.

  • PDF

강화학습에 기반한 모델로 게임의 설계 및 구현 (Design and Implementation of Othello game Based on Reinforcement Learning)

  • 이동훈;우종우
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.778-780
    • /
    • 2005
  • 최근 인공지능의 기법을 도입한 게임에 관한 연구가 활발히 진행되고 있다. 특히 신경망의 역 전파 알고리즘을 적용한 게임은 구현이 용이하고 학습이 완료되면 비교적 실행이 빨라서 많은 연구가 진행되고 있지만 기본적인 학습시간이 길고 최적화에 관한 문제점이 존재하고 있다. 이러한 문제점을 개선하고자 본 논문에서는 기존의 역 전파 알고리즘과 강화학습의 Q-learning알고리즘을 모델로 게임에 적용하여 비교 분석 하였다. 실험은 단순한 min-max 알고리즘과 각각 대결하여 승수 와 승율을 중심으로 비교하였고 실험의 결과는 강화학습의 알고리즘이 역 전파 알고리즘에 비하여 비교적 우수한 결과를 제시하였다.

  • PDF