This paper proposes a decision making scheme for choosing the best move at each state of game in order to implement an artificial intelligence othello game player. The proposed decision making scheme predicts the various possible states of the game when the game has progressed from the current state, evaluates the degree of possibility of winning or losing the game at the states, and searches the best move based on the evaluation. In this paper, we generate learning data by decomposing the records of professional players' real game into states, matching and accumulating winning points to the states, and using the Artificial Neural Network that learned them, we evaluated the value of each predicted state and applied the Minimax search to determine the best move. We implemented an artificial intelligence player of the Othello game by applying the proposed scheme and evaluated the performance of the game player through games with three different artificial intelligence players.
인공지능(AI : Artificial Intelligence)은 지능을 만들 수 있는 방법론이나 실현 가능성 등을 연구하는 컴퓨터 공학 및 정보기술과학 분야이다. 오델로(Othello) 게임은 다른 게임에 비해 규칙이 간단하며 $8{\times}8$인 제한적인 공간에서 이루어지기 때문에 AI로 제작되는 사례가 많다. 기존의 알고리즘은 추후에 발생하는 모든 경우의 수를 탐색하거나 룰을 이용하여 처리하기 때문에 처리시간이 오래 걸리며 새로운 상황에 대처하는데 효율적이지 않다. 본 연구에서는 이런 단점을 보안하고자 오델로 게임에 AI의 한 분야인 사례기반추론(CBR : Case-based Reasoning)알고리즘을 도입한다. CBR알고리즘 이란 주어진 문제를 해결하기 위해 과거에 있었던 유사한 문제를 검색하여 상황에 맞는 해결방법을 제시하는 방식을 의미한다. 지금까지 오델로 게임에 여러가지 AI기술을 이용하였으나 CBR알고리즘을 적용한 사례가 없었다. 본 연구에서는 CBR알고리즘을 오델로 게임에 적용하여 보다 빠른 연산속도로 다음 작업을 처리할 수 있으며 기존의 사례가 충분할 때는 새로운 상황에 효율적으로 대처할 수 있을 뿐 아니라 사용자로 하여금 보다 어려운 오델로 게임을 만들 수 있는 시스템을 제안한다.
본 논문에서는 인공지능 오델로 게임 에이전트를 구현하기 위해 실제 프로기사들의 기보를 CNN으로 학습시키고 이를 상태의 형세 판단을 위한 근거로 삼아 최소최대탐색을 이용해 현 상태에서 최적의 수를 찾는 의사결정구조를 사용하고 이를 발전시키고자 강화학습 이론을 이용한 자가대국 학습방법을 제안하여 적용하였다. 본 논문에서 제안하는 구현 방법은 기보학습의 성능 평가 차원에서 가치평가를 위한 네트워크로서 기존의 ANN을 사용한 방법과 대국을 통한 방법으로 비교하였으며, 대국 결과 흑일 때 69.7%, 백일 때 72.1%의 승률을 나타내었다. 또한 본 논문에서 제안하는 강화학습 적용 결과 네크워크의 성능을 강화학습을 적용하지 않은 ANN 및 CNN 가치평가 네트워크 기반 에이전트와 비교한 결과 각각 100%, 78% 승률을 나타내어 성능이 개선됨을 확인할 수 있었다.
기존의 연구 논문 중 비결정론적인 알고리즘인 유전자 알고리즘이나 인공신경망 등을 오델로 게임에 적용하여 자동학습을 시킨 예는 많으나 면역알고리즘을 모델로 게임에 적용한 예는 찾기가 어렵다 본 논문에서는 생리학의 면역시스템의 특징을 그대로 적용한 면역알고리즘을 모델로 게임에 적용하여 게임전략 생성에 관하여 연구한다. 생리학의 면역시스템은 자기조절능력이 있다는 외과 재 감염시 빠르게 대응할 수 있다는 특징이 있다. 면역알고리즘을 이용하여 탐색된 전략을 유전자알고리즘 그리고 기존에 연구되어진 게임전략 등과 실험하여 그 결과를 비교.연구한 결과 면역알고리즘을 적용하여 탐색된 모델로 게임전략이 가장 높은 승률을 보인다.
인공지능 기법을 이용한 컴퓨터 게임에 대한 학술적 연구는 오랫동안 이루어져 왔으며 주로 게임에 대한 숙련도를 높여서 인간에게 승리하는 것이 주요 연구 목적이었다. 그러나 최근의 상업용 게임에서는 게임의 흥미를 제공하기 위해서 사용자의 적응을 목적으로 개발하고 있다. 본 논문에서는 기존의 강화학습알고리즘을 수정하여 사용자 적응에 중점을 둔 적응형 강화 학습 알고리즘을 제안하였다. 실험대상으로는 많은 상태공간을 가진 오델로 게임을 대상영역으로 하여 시스템을 설계 및 구현하였다. 시스템의 성능측정은 두개의 강화학습 알고리즘이 각각 Min-Max 알고리즘과 대결하는 방식으로 실험을 하였으며, 결과는 기존의 강화 학습 알고리즘과의 대결에서도 향상된 학습율을 나타내었다.
최근 인공지능의 기법을 도입한 게임에 관한 연구가 활발히 진행되고 있다. 특히 신경망의 역 전파 알고리즘을 적용한 게임은 구현이 용이하고 학습이 완료되면 비교적 실행이 빨라서 많은 연구가 진행되고 있지만 기본적인 학습시간이 길고 최적화에 관한 문제점이 존재하고 있다. 이러한 문제점을 개선하고자 본 논문에서는 기존의 역 전파 알고리즘과 강화학습의 Q-learning알고리즘을 모델로 게임에 적용하여 비교 분석 하였다. 실험은 단순한 min-max 알고리즘과 각각 대결하여 승수 와 승율을 중심으로 비교하였고 실험의 결과는 강화학습의 알고리즘이 역 전파 알고리즘에 비하여 비교적 우수한 결과를 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.