• Title/Summary/Keyword: Ostreopsis

Search Result 6, Processing Time 0.028 seconds

Comparative Ecological Characteristics of Two Potentially Toxic Epiphytic Dinoflagellate Species, Ostreopsis sp. and Coolia canariensis, Native to Jeju Island

  • Mi Ryoung Oh;Hyung Seop Kim;Bora Jang;Jong Hyeok Kim;Keon Gang Jang;Jong Woo Park;Wonho Yih
    • Ocean and Polar Research
    • /
    • v.45 no.2
    • /
    • pp.57-69
    • /
    • 2023
  • Growth responses along the gradient of water temperature, salinity, and light intensity and cytotoxicity against Artemia nauplii were explored using Ostreopsis sp. and Coolia canariensis strains, representing the two potentially toxic epiphytic dinoflagellate (EPD) species from Jeju coastal waters of Korea. Variation in maximum growth rate (GRmax) and maximum biomass yield (Ymax) along the environmental gradients was quite contrasting between the two strains, which appears to be reflected in the in situ abundance distribution of the corresponding genera. The more eurythermal characteristics of Ostreopsis sp. strain were in good agreement with the relative distribution of Ostreopsis spp. and Coolia spp. in 520 macroalgal samples collected from 6 stations. The more stenohaline C. canariensis strain was well matched by a markedly narrower range of salinities in the in situ distribution of Coolia spp. than the salinity range for Ostreopsis species. The differences in light adaptation between the high light-preferring Ostreopsis sp. strain and the more euryphotic C. canariensis strain were remarkably consistent with the distinct vertical profiles of Ostreopsis spp. and Coolia spp. abundance in the red alga Amphiroa sp. off Moom-seom. Cytotoxicity against Artemia nauplii in the Ostreopsis sp. preparation with 1000 cells ml-1 was similar to that in C. canariensis preparation with 12000 cells ml-1, which is noteworthy. Thus, the new potential cytotoxicity risks from C. canariensis along with the well-known toxic genus Ostreopsis may be introduced to Jeju coasts, which necessitates further exploration into the contrasting ecological niches occupied by EPD species in relation to their cytotoxicity.

Distribution and Molecular Phylogeny of the Toxic Benthic Dinoflagellate Ostreopsis sp. in the Coastal Waters off Jeju Island, Korea (춘계 제주 연안에서 유독 저서성 와편모류 Ostreopsis sp.의 분포와 분자계통학적 위치)

  • KIM, SUNJU;SEO, HYOJEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.236-248
    • /
    • 2019
  • We investigated occurrence and molecular phylogeny of the toxic epiphytic dinoflagellate Ostreopsis at seven sampling sites in the coastal waters off Jeju Island of Korea in April, 2017. During the sampling period, surface water temperature ranged from 15.7 to $18.3^{\circ}C$ and salinity was relatively constant, ranging from 33.4 to 34.9. Of a total of 13 macroalgal species collected from all sampling sites, Ostreopsis cells were observed from 8 macroalgal species and the highest cell abundance ($157.5cells\;g^{-1}$) was recorded on the red alga Grateloupia filicina at St. 6. LSU rDNA D8/D10 sequences of all Korean Ostreopsis strains isolated from the 4 sampling sites were 100% identical. Molecular phylogentic analyses (BI and ML) inferred from LSU rDNA alignment showed that the Korean Ostreopsis strains placed into the previously described the Ostreopsis sp. 1 clade, which contained strains isolated from the temperate coastal waters of Japan. The Korean Ostreopsis sp. 1 strain grew in a wide range of temperature ($10-30^{\circ}C$) and salinity (25-30), with its maximum growth rate of $0.49d^{-1}$ at $25^{\circ}C$ and salinity of 30, indicating that they can be tolerated in temperate areas.

Abundance of Epiphytic Dinoflagellates from Jeju Island during Autumn 2009 Revisited with Special Reference to the Surface-to-Volume Ratio of Substrate Macroalgal Species

  • Kim, Hyung Seop;Yih, Wonho;Oh, Mi Ryoung;Jang, Keon Gang;Park, Jong Woo;Ko, Yong Deok
    • Ocean and Polar Research
    • /
    • v.43 no.3
    • /
    • pp.99-111
    • /
    • 2021
  • Occurrence of epiphytic dinoflagellates (EPDs) in coastal waters off Jeju was first reported in 2011 based on 45 substrate samples from 24 macroalgal species. When re-analyzing, the extreme heterogeneous distribution of whole and genus-specific EPDs was reconfirmed across the sampling stations and substrate macroalgal species, as well as even across substrate samples of the same species. Abundance maximum of an EPD genus (cells g-wwt-1) at a fixed surface-to-volume ratio (SA/V ratio) of the macroalgal species increased as the SA/V ratio increased up to 500 (cm2 cm-3). However, the abundance maximum of Ostreopsis further increased even in the MG2 (morphological group 2) macroalgae with the SA/V ratios over 500. The number of substrate macroalgal species on the plane of the MG and sampling station was more or less evenly scattered than the average EPD abundance, which was primarily driven by Gambierdiscus and Ostreopsis. Of the total EPD abundance of the five stations, 90.6% were represented by the two most common and abundant genera, Gambierdiscus and Ostreopsis, each accounting for 41.6% and 49.0%. Spatially, 95.9% of the total EPD abundance was found in St. 4 and St. 5, of which St. 4 with higher water temperature had more Ostreopsis spp. (31.8%), and St. 5 with higher salinity had more Gambierdiscus spp. (27.3%). Thus, the environmental transition to favorable T-S condition to MG2, the thin filamentous macroalgal group with very high SA/V ratios, is thus likely to support further success in EPD genera led by Ostreopsis in the coastal waters of Jeju.

Benthic dinoflagellates in Korean waters

  • Lim, An Suk;Jeong, Hae Jin
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.91-109
    • /
    • 2021
  • The occurrence of benthic dinoflagellates, many of which are known to be toxic, is a critical concern for scientists, government officers, and people in the aquaculture, dining, and tourism industries. The interest in these dinoflagellates in countries with temperate climate is increasing because tropical or subtropical species introduced into temperate waters by currents are able to survive the winter season in the new environment owing to global warming. Recently, several species from the benthic dinoflagellate genera Amphidinium, Coolia, Ostreopsis, Gambierdiscus, and Prorocentrum have been reported in the waters of the South and East Sea of Korea. The advent of the benthic dinoflagellates in Korean waters is especially important because raw or slightly cooked seaweeds, which may harbor these benthic dinoflagellates, as well as raw fish, which can be potentially intoxicated by phytotoxins produced by some of these benthic dinoflagellates, are part of the daily Korean diet. The recent increase in temperature of Korean coastal waters has allowed for the expansion of benthic dinoflagellate species into these regions. In the present study, we reviewed the species, distribution, and toxicity of the benthic dinoflagellates that have been reported in Korean waters. We also provided an insight into the ecological and socio-economic importance of the occurrence of benthic dinoflagellates in Korean waters.

First Report for Appearance and Distribution Patterns of the Epiphytic Dinoflagellates in the Korean Peninsula (우리나라 전국연안해역에서 저서 와편모조류의 출현 및 분포현황에 대한 첫 보고)

  • Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.4
    • /
    • pp.355-361
    • /
    • 2012
  • Genus of Gambierdiscus, Ostrepsis, Prorocentrum, Coolia and Amphidinium are epiphytic ciguatoxin-producing armored dinoflagellate, often attached on macroalgae. These organisms are the primary causative agent of ciguatera fish poisoning which occurs in tropical and subtropical regions. However, regardless of the fact that population of epiphytic dinoflagellates have expanded to such temperate areas from sub-trophic and trophic areas, monitoring of the epiphytic dinoflagellates was greatly lacked in coastal water of Korean Peninsula. This study was performed in the Korean Peninsula in November, 2011. Cell densities of Gambierdiscus spp. on macroalgae ranged from zero to 10 cells $g^{-1}$ and the maximum density was recorded at St.18 (Pohang guryongpo). The abundance of Ostreopsis spp. was highest on macro-algaes Chondrus ocellatus, Lomentaria catenata and Plocamium telfairiae (140 cells $g^{-1}$). The maximum abundance of Prorocentrum, Coolia and Amphidinium were 52, 3 and 1 cells $g^{-1}$, respectively. Of these, Prorocentrum lima was observed at most stations of East Sea. Therefore, our results suggest that the epiphytic armored dinoflagellates may have adapted to Korean coastal water of temperate areas (i.e., East Sea) and those abundances may be related to the macroalgal species.

Presence of benthic dinoflagellates around coastal waters of Jeju Island including newly recorded species

  • Shah, Md. Mahfuzur Rahman;An, So-Jung;Lee, Joon-Baek
    • Journal of Ecology and Environment
    • /
    • v.36 no.4
    • /
    • pp.347-370
    • /
    • 2013
  • A study on the presence of benthic dinoflagellates in the intertidal zone along the coasts of Jeju Island, Korea was conducted during 2011 and 2012. Identification and taxonomic observations were made of the benthic dinoflagellate samples using light and epifluorescence microscopy. Thirty-seven dinoflagellate taxa belong to five orders, nine families, 18 genera and 30 species, which are new records for Korean waters, were detected in this study. The detailed nomenclature, references, distribution, and illustrations are presented here. The commonly occurring genera were Amphidinium, Coolia, Ostreopsis, Prorocentrum, and Thecadinium. Among the recorded species, 26 were found only in sand sediment, seven in macroalgal samples, and four were found in both sand and macroalgal samples. Of the 37 species, nine were potentially toxic. These results suggest that diversified benthic dinoflagellates including several potentially toxic species occur in sand sediment and macroalgae in the intertidal zone along the coasts of Jeju Island. The morphological features of the identified species were more or less similar to observations made by previous studies in Korea and elsewhere. The presence of known toxic species may indicate a potential risk of toxicity in the marine ecosystem of Jeju Island. The present study can be helpful for further detailed taxonomic, toxicological, molecular phylogenetic studies and may help in the management and conservation of Jeju Island's marine ecosystem.