• 제목/요약/키워드: Osteogenic Differentiation

검색결과 226건 처리시간 0.026초

치수, 치주인대 및 치낭에서 얻어진 성체줄기세포의 조골세포로의 분화능력 평가에 관한 연구 (A study on differentiation potency of adult stem cells from pulp, periodontal ligament, and dental follicle to osteoblast)

  • 이중규;이재훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권1호
    • /
    • pp.7-15
    • /
    • 2010
  • Complex human tissues harbor stem cells and precursor cells, which are responsible for tissue development or repair. Recently, dental tissues such as dental pulp, periodontal ligament (PDL), dental follicle have been identified as easily accessible sources of undifferentiated cells. These tissues contain mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from pulp, PDL, and dental follicle and differentiate them into osteoblast and examine the bone induction capacity. Dental pulp stem cell (DPSC), periodontal ligament stem cell (PDLSC), and dental follicle precursor cell (DFPC) were obtained from human 3rd molar and cultured. Each cell was analyzed for presence of stem cell by fluorescence activated cell sorter (FACs) against CD44, CD105 and CD34, CD45. Each stem cell was cultured, expanded and grown in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix. Osteogenic pathway was checked by alizarin red staining, alkaline phosphatase (ALP) activity test and RT-PCR for ALP and osteocalcin (OCN) gene expression. According to results from FACs, mesenchymal stem cell existed in pulp, PDL, and dental follicle. As culturing with bone differentiation medium, stem cells were differentiated to osteoblast like cell. Compare with stem cell from pulp, PDL and dental follicle-originated stem cell has more osteogenic effect and it was assumed that the character of donor cell was able to affect on differential potency of stem cell. From this article, we are able to verify the pulp, PDL, and dental follicle from extracted tooth, and these can be a source of osteoblast and stem cell for tissue engineering.

구강 편평세포암종 제거 후 발생한 경부 골육종에서의 상피간엽이행 (Epithelial-mesenchymal transition in osteogenic sarcoma of the neck following oral squamous cell carcinoma)

  • 김현실;김남희;한선희;차인호;서동준;박원서;육종인;김형준
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권3호
    • /
    • pp.172-176
    • /
    • 2010
  • Postirradiation extraosseous osteogenic sarcomas are uncommon in the head and neck, despite the extensive use of high-dose radiation. It has been described as de novo radiation-induced neoplasm. We present a 73-year-old male who had been treated by radiotherapy for gingival cancer 7 years earlier and later developed extraosseous osteogenic sarcomas (EOSs) of the neck. Microscopically, the neck mass was composed with mesenchymal malignant cells with cartilaginous and osteogenic differentiation. Immunohistochemical stain demonstrated strong positivity of tumor cells for Snail, the one of major epithelial-mesenchymal transition (EMT) inducer. The E-cadherin expression was scarce, showing inverse relationship to Snail expression. Compared with previous squamous cell carcinoma (SCC) of the gingiva, the present EOS sample revealed the remained epithelial cells on cytokeratin immunohistochemistry, suggesting the tumor arise from the cells of epithelial origin. We have also reviewed the previous 6 cases of head and neck EOSs carefully. The clinicopathologic features of the unusual lesion suggest that it is an incomplete EMT of precedent epithelial malignancy rather than de novo pathology.

Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling

  • Wang, Yuli;Ma, Junchi;Du, Yifei;Miao, Jing;Chen, Ning
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.186-194
    • /
    • 2016
  • Epidemiological evidence suggests that bone is especially sensitive to oxidative stress, causing bone loss in the elderly. Previous studies indicated that human amnion-derived mesenchymal stem cells (HAMSCs), obtained from human amniotic membranes, exerted osteoprotective effects in vivo. However, the potential of HAMSCs as seed cells against oxidative stress-mediated dysfunction is unknown. In this study, we systemically investigated their antioxidative and osteogenic effects in vitro. Here, we demonstrated that HAMSCs significantly promoted the proliferation and osteoblastic differentiation of $H_2O_2$-induced human bone marrow mesenchymal stem cells (HBMSCs), and down-regulated the reactive oxygen species (ROS) level. Further, our results suggest that activation of the ERK1/2 MAPK signal transduction pathway is essential for both HAMSCs-mediated osteogenic and protective effects against oxidative stress-induced dysfunction in HBMSCs. U0126, a highly selective inhibitor of extracellular ERK1/2 MAPK signaling, significantly suppressed the antioxidative and osteogenic effects in HAMSCs. In conclusion, by modulating HBMSCs, HAMSCs show a strong potential in treating oxidative stress- mediated bone deficiency.

Development of Refolding Process to Obtain Active Recombinant Human Bone Morphogenetic Protein-2 and its Osteogenic Efficacy on Oral Stem Cells

  • Lee, Ji-Hye;Jang, Young-Joo
    • International Journal of Oral Biology
    • /
    • 제42권2호
    • /
    • pp.71-78
    • /
    • 2017
  • BMP-2 is a well-known TGF-beta related growth factor, having a significant role in bone and cartilage formation. It has been employed to promote bone formation in some clinical trials, and to differentiate mesenchymal stem cells into osteoblasts. However, it is difficult to obtain this protein in its soluble and active form. hBMP-2 is expressed as an inclusion body in the bacterial system. To continuously supply hBMP-2 for research, we optimized the refolding of recombinant hBMP-2 expressed in E. coli, and established an efficient method by using detergent and alkali. Using a heparin column, the recombinant hBMP-2 was purified with the correct refolding. Although combinatorial refolding remarkably enhanced the solubility of the inclusion body, a higher yield of active dimer form of hBMP-2 was obtained from one-step refolding with detergent. The refolded recombinant hBMP-2 induced alkaline phosphatase activity in mouse myoblasts, at $ED_{50}$ of 300-480ng/ml. Furthermore, the expressions of osteogenic markers were upregulated in hPDLSCs and hDPSCs. Therefore, using the process described in this study, the refolded hBMP-2 might be cost-effectively useful for various differentiation experiments in a laboratory.

Improvement of the osteogenic potential of ErhBMP-2-/EGCG-coated biphasic calcium phosphate bone substitute: in vitro and in vivo activity

  • Hwang, Jae-ho;Oh, Seunghan;Kim, Sungtae
    • Journal of Periodontal and Implant Science
    • /
    • 제49권2호
    • /
    • pp.114-126
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate the enhancement of osteogenic potential of biphasic calcium phosphate (BCP) bone substitute coated with Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2) and epigallocatechin-3-gallate (EGCG). Methods: The cell viability, differentiation, and mineralization of osteoblasts was tested with ErhBMP-2-/EGCG solution. Coated BCP surfaces were also investigated. Standardized, 6-mm diameter defects were created bilaterally on the maxillary sinus of 10 male New Zealand white rabbits. After removal of the bony windows and elevation of sinus membranes, ErhBMP-2-/EGCG-coated BCP was applied on one defect in the test group. BCP was applied on the other defect to form the control group. The animals were sacrificed at 4 or 8 weeks after surgery. Histologic and histometric analyses of the augmented graft and surrounding tissue were performed. Results: The 4-week and 8-week test groups showed more new bone (%) than the corresponding control groups (P<0.05). The 8-week test group showed more new bone (%) than the 4-week test group (P<0.05). Conclusions: ErhBMP-2-/EGCG-coated BCP was effective as a bone graft material, showing enhanced osteogenic potential and minimal side effects in a rabbit sinus augmentation model.

섬유모세포성장인자-23이 D1 간엽줄기세포에서 조골세포로의 분화 및 기질 광화에 미치는 영향 (Effect of Fibroblast Growth Factor 23 on Osteoblastic Differentiation and Mineralization of D1 Mesenchymal Stem Cells)

  • 박경록
    • 생명과학회지
    • /
    • 제26권3호
    • /
    • pp.331-337
    • /
    • 2016
  • 섬유모세포성장인자-23(fibroblast growth factor 23, FGF23)은 뼈를 형성하는 세포에서 주로 생성되지만 그 작용은 신장에서 이루어진다. FGF23은 신장의 나트륨-인산염 공동수송체(Na-phosphate cotransporter)를 억제하여 인산염 재흡수를 감소시킨다. 이렇게 함으로써 인산염 항상성을 조절하는 작용과는 별개로 이것은 in vivo에서 뼈 형성을 억제하는 것으로 알려져 있다. 두개골 조골세포를 이용한 연구에서도 FGF23은 조골세포의 발달, 즉 분화 및 기질의 광화(mineralization)에 악영향을 미쳤다. 본 연구는 FGF23이 골수 유래 간엽줄기세포에서 조골세포로의 발달에 있어서도 유사한 영향을 줄 것인지를 조사한 것이다. 간엽줄기세포주인 D1 세포를 β-glycerophosphate, ascorbic acid, dexamethazone이 포함된 조골배(osteogenic medium)에 배양하여 alkaline phosphatase (Alp) 염색으로 분화를, Alizarin red 염색과 기질의 칼슘 함량의 분석을 통해 광화를 평가하였다. 분화 촉진 유전자인 Runx2, osteocalcin, Alp와 광화 억제 유전자인 Enpp1, Ank의 발현은 RT-PCR로 분석하였다. D1 세포의 증식과 조골세포로의 분화는 생리학적 농도를 훨씬 초과하는 FGF23의 농도에 의해서도 달라지지 않았다. FGF23 처치 1주, 2주, 3주 후 Alizarin red 염색에 의한 광화 정도의 평가에서도 대조군과 실험군의 차이는 발견되지 않았다. 그러나 두 군 모두 시간이 경과함에 따라 광화는 증가되었다. 기질에 침착된 칼슘의 양 또한 차이가 없었다. 분화 촉진 유전자와 광화 억제 유전자의 발현도 양 군 간에 다르지 않았다. 이러한 부정적인(negative) 결과는 FGF23에 의한 세포 내 신호전달의 장애가 아님이 Erk 인산화로 확인되었다. 이상의 결과로 미루어 두개골의 조골세포와 달리 FGF23은 간엽줄기세포에서 조골세포로의 분화와 광화에는 영향을 미치지 않을 것으로 사료된다.

Effects of Watercress Containing Rutin and Rutin Alone on the Proliferation and Osteogenic Differentiation of Human Osteoblast-like MG-63 Cells

  • Hyun, Hanbit;Park, Heajin;Jeong, Jaehoon;Kim, Jihye;Kim, Haesung;Oh, Hyun Il;Hwang, Hye Seong;Kim, Ha Hyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권4호
    • /
    • pp.347-352
    • /
    • 2014
  • Most known osteoporosis medicines are effective for bone resorption, and so there is an increasing demand for medicines that stimulate bone formation. Watercress (N. officinale R. Br.) is widely used as a salad green and herbal remedy. This study analyzed a watercress extract using ultra-performance liquid chromatography/mass spectrometry, and identified a rutin as one of its major constituents. Osteogenic-related assays were used to compare the effects of watercress containing rutin (WCR) and rutin alone on the proliferation and differentiation of human osteoblast-like MG-63 cells. The reported data are expressed as percentages relative to the control value (medium alone; assigned as 100%). WCR increased cell proliferation to $125.0{\pm}4.0%$ ($mean{\pm}SD$), as assessed using a cell viability assay, and increased the activity of alkaline phosphatase, an early differentiation marker, to $222.3{\pm}33.8%$. In addition, WCR increased the expression of collagen type I, another early differentiation marker, to $149.2{\pm}2.8%$, and increased the degree of mineralization, a marker of the late process of differentiation, to $122.9{\pm}3.9%$. Rutin alone also increased the activity of ALP (to $154.4{\pm}12.2%$), the expression of collagen type I (to $126.6{\pm}6.2%$), and the degree of mineralization (to $112.3{\pm}5.0%$). Daidzein, which is reported to stimulate bone formation, was used as a positive control; the effects of WCR on proliferation and differentiation were significantly greater than those of daidzein. These results indicate that WCR and rutin can both induce bone formation via the differentiation of MG-63 cells. This is the first study demonstrating the effectiveness of either WCR or rutin as an osteoblast stimulant.

MC3T3-E1 골아세포에서 발효 다시마 추출물에 의한 조골세포 분화의 촉진 (Fermented sea tangle (Laminaria japonica Aresch) Accelerates Osteoblast Differentiation in murine osteoblastic MC3T3-E1 Cells)

  • 정나라;최영현
    • 한국해양바이오학회지
    • /
    • 제15권1호
    • /
    • pp.24-32
    • /
    • 2023
  • The Laminaria japonica Aresch (Sea tangle) belongs to the brown algae and has a long history as a food material in Asia, including Korea. Recent studies have found that the fermented Sea tangle extract (FST) inhibited the differentiation of osteoclasts and protected osteoblasts from oxidative damage. This study aims to explore the possibility that FST can induce the differentiation of osteoblasts and identify the responsible mechanism. According to our results, FST induced differentiation into osteogenic cells in the presence of osteoblastic MC3T3-E1 cells under non-toxic conditions.. This finding was confirmed by phalloidin staining, increased alkaline phosphatase activity, and calcium deposition. Additionally, it was found that this process was achieved by increasing the expression of key factors involved in osteoblast differentiation, such as runt-related transcription factor-2, osterix, β-catenin, and bone morphogenetic protein-2. Moreover, FST increased autophagy, which may contribute to the maintenance of the bone formation homeostasis, and is associated with the activation of the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways. Although further research about the bioactive substances contained in FST and the tests of their efficacy are required, the results of this study indicate that FST has incredible applicability as a functional material for maintaining the bone homeostasis.

The role of lysophosphatidic acid receptor 1 in inflammatory response induced by lipopolysaccharide from Porphyromonas gingivalis in human periodontal ligament stem cells

  • Kim, Dong Hee;Seo, Eun Jin;Tigyi, Gabor J.;Lee, Byung Ju;Jang, Il Ho
    • International Journal of Oral Biology
    • /
    • 제45권2호
    • /
    • pp.42-50
    • /
    • 2020
  • Lysophosphatidic acid (LPA) is a lipid messenger mediated by G protein-coupled receptors (LPAR1-6). It is involved in the pathogenesis of certain chronic inflammatory and autoimmune diseases. In addition, it controls the self-renewal and differentiation of stem cells. Recent research has demonstrated the close relationship between periodontitis and various diseases in the human body. However, the precise role of LPA in the development of periodontitis has not been studied. We identified that LPAR1 was highly expressed in human periodontal ligament stem cells (PDLSCs). In periodontitis-mimicking conditions with Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS) treatment, PDLSCs exhibited a considerable reduction in the cellular viability and osteogenic differentiation potential, in addition to an increase in the inflammatory responses including tumor necrosis factor-α and interleukin-1β expression and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Of the various LPAR antagonists, pre-treatment with AM095, an LPAR1 inhibitor, showed a positive effect on the restoration of cellular viability and osteogenic differentiation, accompanied by a decrease in NF-κB signaling, and action against Pg-LPS. These findings suggest that the modulation of LPAR1 activity will assist in checking the progression of periodontitis and in its treatment.

Effect of Chitosan on Expression of Osteogenic Genes during the Healing of Rat Extraction Socket

  • Youn, Gap-Hee;Jung, Seunggon;Lee, Tae-Hoon;Kook, Min-Suk;Park, Hong-Ju;Oh, Hee-Kyun
    • Journal of Korean Dental Science
    • /
    • 제7권2호
    • /
    • pp.58-65
    • /
    • 2014
  • Purpose: This study was performed to evaluate the effect of chitosan combined with absorbable gelatin compressed sponge on the expression of osteoblastic differentiation marker genes during the healing of rat extraction socket. Materials and Methods: Twenty-four male Wistar rats were used. In control group, the extraction socket was closed with suture. In chitosan group, the socket was filled with chitosan combined with Gelfoam (Pharmacia & Upjohn Co.) and closed with suture. In each group, the animals were sacrificed at 3 days, 1 week, 2 weeks, and 4 weeks postoperatively. The expression of osteoblastic differentiation marker genes, including BSP, OCN, Runx2, and Col1 were quantified by real-time polymerase chain reaction. Result: Compared to control group, the mRNA level of BSP in chitosan group increased significantly at 2 weeks after extraction and the level of OCN decreased significantly at 3 days and 4 weeks after extraction (P<0.05). The mRNA levels of OCN, Runx2, and Col1 in chitosan group increased slightly at 2 weeks after extraction, but there was no statistical difference between groups. Conclusion: The results indicate that chitosan has some effects on the expression of osteogenic genes during the healing of extraction sockets.