• Title/Summary/Keyword: Osteoblast differentiation

Search Result 310, Processing Time 0.026 seconds

PROBLEMS IN OSTEOGENIC DIFFERENTIATION OF RAT BONE MARROW STROMAL CELLS (쥐의 골수로부터 추출한 줄기세포를 이용한 조골세포로의 분화 유도과정에서 나타난 문제점에 관한 분석 연구)

  • Kim, In-Sook;Cho, Tae-Hyung;Zhang, Yu-Lian;Lee, Kyu-Back;Park, Yong-Doo;Rho, In-Sub;Weber, F.;Lee, Jong-Ho;Kim, Myung-Jin;Hwang, Soon-Jung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This study was aimed to characterize osteogenic potential of rat bone marrow stromal cells (BMSC) isolated with standard flushing method and investigate the plasticity of transdifferentiation between osteoblastic and adipocytic lineage of cultured BMSC. Unlike aspiration method in human, rat bone marrow was extracted by means of irrigation with culture media that elevates the possibility of co-extraction of committed osteoprogenitor, or preosteoblast or other progenitor cells of several types present inside bone marrow. The cultured stromal cells showed high ALP activity which is representative marker of osteoblast without any treatment. Osteogenic inducers such as Dex and BMP-2 were examined for the evaluation of their effect on osteogenic and adipocytic differentiation of stromal cells, because they function as osteoinductive agent in stromal cells, but simultaneously induce adipogenic differentiation. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity or mRNA expression of osteoblast markers such as osteopontin, bone sialoprotein, collagen type I and CbfaI, and in vitro matrix mineralization by von Kossa staining. Oil red staining method was used to detect adipocyte and adipocytic marker, aP2 and $PPAR{\gamma}2$ expression was examined using RT-PCR. It can be supposed that irrigation procedure resulted in high portion of already differentiation-committed osteoprogenitor cell showing elevated ALP activity and strong mineralization only under the supplement of $100{\mu}M$ ascorbic 2-phosphate and 10mM ${\beta}$-glycerophosphate without any treatment of osteogenic inducers such as Dex and BMP-2. Dex and BMP-2 seemed to transdifferentiate osteoprogenitor cells having high ALP activity into adipocytes temporarily, but continuous treatment redifferentiated into osteoblast and developed in vitro matrix mineralization. This property must be considered either in tissue engineering for bone regeneration, or in research of characterization of osteogenic differentiation, with rat BMSC isolated by the standard irrigation method.

Tectorigenin Promotes Osteoblast Differentiation and in vivo Bone Healing, but Suppresses Osteoclast Differentiation and in vivo Bone Resorption

  • Lee, So-Youn;Kim, Gyu-Tae;Yun, Hyung-Mun;Kim, Youn-Chul;Kwon, Il- Keun;Kim, Eun-Cheol
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.476-485
    • /
    • 2018
  • Although tectorigenin (TG), a major compound in the rhizome of Belamcanda chinensis, is conventionally used for the treatment of inflammatory diseases, its effects on osteogenesis and osteoclastogenesis have not been reported. The objective of this study was to investigate the effects and possible underlying mechanism of TG on in vitro osteoblastic differentiation and in vivo bone formation, as well as in vitro osteoclast differentiation and in vivo bone resorption. TG promoted the osteogenic differentiation of primary osteoblasts and periodontal ligament cells. Moreover, TG upregulated the expression of the BMP2, BMP4, and Smad-4 genes, and enhanced the expression of Runx2 and Osterix. In vivo studies involving mouse calvarial bone defects with ${\mu}CT$ and histologic analysis revealed that TG significantly increased new bone formation. Furthermore, TG treatment inhibited osteoclast differentiation and the mRNA levels of osteoclast markers. In vivo studies of mice demonstrated that TG caused the marked attenuation of bone resorption. These results collectively demonstrated that TG stimulated osteogenic differentiation in vitro, increased in vivo bone regeneration, inhibited osteoclast differentiation in vitro, and suppressed inflammatory bone loss in vivo. These novel findings suggest that TG may be useful for bone regeneration and treatment of bone diseases.

Effects of enamel matrix derivative and titanium on the proliferation and differentiation of osteoblasts (법랑기질유도체를 도포한 타이태늄 표면에서 조골세포의 증식 및 분화)

  • Park, Sang-Hyun;Lee, In-Kyeong;Yang, Seung-Min;Shin, Seung-Yun;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.3
    • /
    • pp.359-372
    • /
    • 2003
  • Among objectives of periodontal therapy. the principal one is the morphological and functional reconstruction of lost periodontal supporting tissues. This includes de novo formation of connective tissue attachment and the regrowth of alveolar bone. The use of enamel matrix derivative(EMD) may be a suitable means of regeneration new periodontal attachment in the infrabony defects. Implant used to replace lost tooth but, implantitis occurred after installation. The purpose of this study was to investigate the effects of EMD on differentiation and growth of osteoblast in titanium disc. Twentyfive millimeter diameter and 1mm thick Ti disc which was coated 25, 50, 100, 200${\mu}g$/ml of EMD(Emdogain(R)) used as experimental group, 25, 50, 100, 200ng/d of rhBMP-2 as positive control group, and no coat as negative control group. A human osteosarcoma cell line Saos-2 was cultured in Ti disc and cell proliferation and Alkaline phosphatase (ALP) activity were measured at 1 and 6 days. PCR was performed at 2 and 8 hours. Semi-quantitative RT-PCR for mRNA expressions of various osteoblastic differentiation markers -type I collagen, ALP, osteopontin, and bone sialoprotein - were performed at appropriate concentrations based upon the results of MTT and ALP assay. Cultured cell-disc complexes were prepared for scanning electron microscopy (SEM) at 2 hour. Data were analyzed using Mann-Whitney and repeated- measures 1-way analysis of variance(SPSS software version 10,SPSS. Chicago. IL). After culture, there was more osteoblast in EMD100${\mu}g$/ml than in EMD50, 200${\mu}g$/ml on day 6. There was significant difference in experimental and positive control group compared control group, as times go by(1 and 6 days). Alkaline phosphatase activity was different significantly in EMD100, 200${\mu}g$/ml and BMP100, 200${\mu}g$/ml on day 6. The results of reverse transcriptase-polymerase chain reaction (RT-PCR) showed that expression of mRNA for ALPase, collagen type I, osteopontin. hone sialoprotein and BMP-2 was detected at 2 hour and 8 hour in EMI 200${\mu}g$/ml subgroup and BMP100ng/ml subgroup. The results of this study suggest that application of enamel matrix derivative on osteoblast attached to titanium surface facilitate the expression of bone specific protein and the differentiation and growth of osteoblast.

Zoledronate(Zometa(R))inhibits the formation of osteoblast in rat osteoblastic cell line UMR-106 (Zoledronate이 UMR-106 세포의 증식과 조골세포 형성에 미치는 영향)

  • Jeong, Ki-Hoon;Ryu, Dong-Mok;Jee, Yu-Jin;Lee, Deok-Won;Lee, Hyun-Woo
    • The Journal of the Korean dental association
    • /
    • v.46 no.10
    • /
    • pp.623-632
    • /
    • 2008
  • Purpose : The purpose of this study is to identify the effect of zoledronate(Zometa(R)), which is most common nitrogen containing bisphosphonate, on survival, proliferation, and differentiation of osteoblast. Material & Methods: Twenty four cell culture plates containing essential medium were seeded with UMR-106 cell lines, at density of 5 x $10^4 cells per plates. Each plates were incubated with 5% $CO^2 incubator at $37^{\circ}C$. Starting from 2 days after incubation, cell culture medias were replaced, and added with osteogenesis induction media and 0, 0.01, 0.1, 0.5, 1, $3\muM$ of zoledronate(Zometa(R)), every 2 days, for 12 days. Control group was plates not added with zoledronate($0\muM$), and experiment group were plates added with different concentration of zoledronates(0, 0.01, 0.1, 0.5, 1, $3\muM$). Mature osteoblasts were identified with Alizarine Red staining, and protein samples were collected. Optical density was determined at wavelength of 405nm with ELISA reader. For viability analysis, cells were harvested and incubated with propidium iodide, and analysed with flow cytometry. Western blot technique was used to analyse Runx2 protein of osteoblast. Results : Secretion of bone matrix decreased as zoledronate concentration increased, and zoledronate did not effect survival rate of UMR-106 cells when measured with flow cytometer. Expression of Runx2 protein was inhibited as zoledronate concentration increased. Conclusion : From the results, we were able to identify that increase of zoledronate concentration inhibited differentiation of UMR-106 cell to osteoblast, without effecting quantity or survival rate.

  • PDF

Effects of Asparagus cochinchinensis (Lour.) Merr. on the Stimulation of Osteoblast Differentiation and Inhibition of Osteoclast Generation (천문동 추출물에 의한 조골세포 분화 촉진 및 파골세포 생성 억제효과)

  • Lee, Seung-Youn;Kim, Si-Na;Kim, Jong-Keun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.1
    • /
    • pp.16-19
    • /
    • 2008
  • Bone mass in adults decreases with age because of the imbalance between the rate of bone formation and resorption. We performed this study to investigate whether Asparagus cochinchinensis (Lour.) Merr. (ACAE) plays a role in osteoblasts differentiation and osteoclasts formation. Ethanol extract of ACAE showed increase in the differentiation and alkaline phosphatase activity of osteoblasts. Also, it decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (OCLs) and TRAP activity. Therefore, ACAE has the potential to prevent bone-related diseases such as osteoporosis by increasing the differentiation of osteoblasts and reducing both the number and activity of osteoclasts.

Beneficial Effects of Marine Bioactive Substances on Bone Health, via Osteoarthritis Inhibition and Osteoblast Differentiation

  • Nguyen, Minh Hong Thi;Qian, Zhong-Ji;Jung, Won-Kyo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • Bone health is maintained by balance between bone resorption and bone formation, and bone homeostasis requires balanced interactions between osteoblasts and osteoclasts. Most of drugs and functional foods for bone health have been developed as bone resorption inhibitors, which maintain bone mass by inhibiting the function of osteoclasts. The recent studies have shown beneficial effects of marine natural products on bone health. Therefore, this review is aimed to study effects of marine-derived natural substances on osteoarthritis inhibition via attenuation of MMPs and osteoblastic differentiation via activation of alkaline phosphatase (ALP), osteoclacin (OC), bone morphogenic protein-2 (BMP-2) as an important factor for bone formation, and mineralization. The present review can provide new insights in the osteoblastic differentiation of marine natural products and possibility for their application in bone health supplement.

Effects of Dokhwalgisaengtang-gami Water Extract on Osteoclast Differentiation and Osteoblast Function in RANKL-induced RAW 264.7 Cell (독활기생탕가미방(獨活寄生湯加味方)이 파골세포 분화 억제와 조골세포 활성에 미치는 영향)

  • Je, Yun-Mo;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.26 no.2
    • /
    • pp.1-16
    • /
    • 2013
  • Objectives: This study was performed to evaluate the effect of Dokhwalgisaengtang-gami water extract(DGG) on osteoporosis. Methods: The osteoclastogenesis and gene expression were determined in RANKL-stimulated RAW 264.7 cell. And osteoblastogenesis was also determined in rat calvarial cell. Results: The results were summarized as followes. 1. DGG decreased the number of TRAP positive cell in RANKL-stimulated RAW 264.7 cell. 2. DGG inhibited TRAP activity in RANKL-stimulated RAW 264.7 cell. 3. DGG decreased the expression of NAFTc1, MITF in RANKL-stimulated RAW 264.7 cell. 4. DGG increased the expression of iNOS, COX-2, IL-6 in RANKL-stimulated RAW 264.7 cell. 5. DGG decreased the expression of cathepsin K, MMP-9, TRAP in RANKL-stimulated RAW 264.7 cell. 6. DGG increased cell proliferation of rat calvarial cell. 7. DGG increased ALP activity in rat calvarial cell 8. DGG increased bone matrix protein, collagen synthesis and nodule formation in rat calvarial cell. Conclusions: It is concluded that DGG might decrease the bone resorption resulted from decrease of osteoclast differentiation and it's related gene expression. And DGG might increase the bone formation resulted from increase of osteoblast function.

The Effects of Dexamethasone on Growth and Differentiation of Osteoblast-like Cell (덱사메타존이 골아유사세포의 성장과 분화에 미치는 영향)

  • Lee, Jae-Mok
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.277-289
    • /
    • 1999
  • The ultimate aim of periodontal treatment is periodontal regeneration, which necessiates the regeneration of bone tissues. To evaluate the effects of Dex growth and differentiation of MC3T3-E1 cells, cells were seeded in alpha-modified eagle medium containing 10% fetal bovine serum, 10mM beta-glycerophosphate , $50{\mu}g/ml$ of ascorbic acid, with or without $10^{-7}M$ Dex and examined cell proliferation activities, alkaline phosphatase activities, and bone nodule formation until 25days. The results were as follows : 1. In Dex group, cell proliferation activities were lower until 15 days compared to control group. Bone nodules formation were showed at 10 days. 2. In the time-response effect, ALP activities were increased until the 10 days in control groups thereafter decreased and ALP activities of Dex group were lower aspect than control group until the 10 days In this study, bone nodule formation of osteoblast-like cells were accelerated by Dex and cell proliferation activities, ALP activity of Dex group showed lower than control group. Dex was considered that it did suppress initial growth, but accerelate mineralization of osteoblast-like cells.

  • PDF

Antioxidant Activity and Cell Differentiation Effects of Monascus purpureus Pigment on Osteoblast-like MC3T3-E1 Cells (홍국색소의 항산화 활성 및 조골세포 분화에 미치는 영향)

  • Kim, Bokyung;Ryu, Jihye;Jang, Seok Oui;Kim, Mihyang
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.468-475
    • /
    • 2020
  • The purpose of this study was to investigate antioxidant activity and cell differentiation effects of Monascus purpureus pigment on osteoblast-like MC3T3-E1 cell. In order to examine the antioxidant activities of Monascus purpureus pigment, DPPH radical scavenging, ABTS radical scavenging and SOD-like activities were investigated. DPPH radical and ABTS radical scavenging activities of Monascus purpureus pigment were increased in a dose-dependent manner, and maximum activity were 94% and 99% at a concentration of 1,000 ㎍/ml, respectively. Additionally, SOD-like activity of Monascus purpureus pigment showed 62% at a concentration of 1,000 ㎍/ml. MC3T3-E1 cells did not show cytotoxicity in the concentration range of Monascus purpureus pigment 1~100 ㎍/ml. The ALP activity was increased by addition of Monascus purpureus pigment, and the maximum activity was 124% as compared with control. In addition, nodule formation, a late differentiation factor for bone formation, was increased by adding Monascus purpureus pigment compared to control. These results suggest that Monascus purpureus pigment is expected to be a natural source for developing functional materials to prevent bone-related diseases by osteoblast differentiation.

Magnesium vs. machined surfaced titanium - osteoblast and osteoclast differentiation

  • Kwon, Yong-Dae;Lee, Deok-Won;Hong, Sung-Ok
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.157-164
    • /
    • 2014
  • PURPOSE. This study focused on in vitro cell differentiation and surface characteristics in a magnesium coated titanium surface implanted on using a plasma ion source. MATERIALS AND METHODS. 40 commercially made pure titanium discs were prepared to produce Ti oxide machined surface (M) and Mg-incorporated Ti oxide machined surface (MM). Surface properties were analyzed using a scanning electron microscopy (SEM). On each surface, alkaline phosphatase (ALP) activity, alizarin red S staining for mineralization of MC3T3-E1 cells, and quantitative analysis of osteoblastic gene expression, were evaluated. Actin ring formation assay and gene expression analysis of TRAP and GAPDH performing RT-PCR were performed to characterize osteoclast differentiation on mouse bone marrow-derived macrophages (BMMs). RESULTS. MM showed similar surface morphology and surface roughness with M, but was slightly smoother after ion implantation at the micron scale. M was more hydrophobic than MM. No significant difference between surfaces on ALP activity at 7 and 14 days were observed. Real-time PCR analyses showed similar levels of mRNA expression of the osteoblast phenotype genes; osteopontin (OPN), osteocalcin (OCN), bone sialoprotein (BSP), and collagen 1 (Col 1) in cell grown on MM at 7, 14 and 21 days. Alizarin red S staining at 21 days showed no significant difference. BMMs differentiation increased in M and MM. Actin ring formation assay and gene expression analysis of TRAP showed osteoclast differentiation to be more active on MM. CONCLUSION. Both M and MM have a good effect on osteoblastic cell differentiation, but MM may speed the bone remodeling process by activating on osteoclast differentiation.