• Title/Summary/Keyword: Osoteomic

Search Result 2, Processing Time 0.019 seconds

The Comparison of Biomechanical Changes between Spinous Process Osteotomy and Conventional Laminectomy (극돌기 절골술과 추궁판 절제술에 대한 생역학적 비교)

  • Kang, Kyoung-Tak;Son, Ju-Hyun;Chun, Heoung-Jae;Kim, Ho-Joong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1651-1654
    • /
    • 2008
  • Previous reports have introduced the technique of spinous process osteotomy to decompress spinal stenosis, a procedure which aims to afford excellent visualization while minimizing destruction of tissures not directly involved in the pathologic process. However, bio-mechanically it has not been investigated whether the sacrifice of posterior spinous process might have potential risk of spinal instability or not, even though supra-spinous and inter-spinous ligament are preserved. Therefore the aim of this study is to evaluate the bio-mechanical properties after spinous process osteotomiy, using finite element analysis. In the model of spinous process osteotomy the increase of stress in the disc and segmental rangesof motions were not changed significantly. It is due to the fact that the instability of lumbar spine has been maintained by the two-types of ligaments compared with the prior surgical technique. Therefore, according to the finite element result on this study, these osotetomy was considered to be a clinicallysafe surgical procedure and could not cause the instability of patient.

  • PDF

The Comparison of Biomechanical Changes between Spinous Process Osteotomy and Conventional Laminectomy (극돌기 절골술과 추궁판 절제술에 대한 생체역학적 비교)

  • Kang, Kyoung-Tak;Chun, Heoung-Jae;Son, Ju-Hyun;Kim, Ho-Joong;Moon, Seong-Hwan;Lee, Hwan-Mo;Kim, Ka-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.645-651
    • /
    • 2009
  • Previous studies have introduced the technique of spinous process osteotomy to decompress spinal stenosis, a procedure which aims to afford excellent visualization while minimizing destruction of tissues not directly involved in the pathologic process. However, biomechanically it has not been investigated whether the sacrifice of posterior spinous process might have potential risk of spinal instability or not, even though supra-spinous and inter-spinous ligaments are preserved. Therefore the aim of this study is to evaluate the biomechanical properties after spinous process osteotomy, using finite element analysis. The model of spinous process osteotomy exhibited no significant increase in disc stress or change in segmental range of motion. It is due to the fact that the instability of lumbar spine has been maintained by the two-types of ligaments compared with the prior surgical technique. Therefore, according to the finite element result on this study, this osotetomy was considered to be a clinically safe surgical procedure and could not cause the instability of the lumbar spine.