• Title/Summary/Keyword: Osmotically-driven Process

Search Result 2, Processing Time 0.017 seconds

Performance Analysis of Plate-and-Frame Forward Osmosis Membrane Module for Concentrating High Salinity Wastewater (고염도 폐수 농축을 위한 평판형 정삼투막 모듈의 성능 분석)

  • Kim, Yu Chang;Lee, Sungyun;Park, Sang-Jin;Kim, Han Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.68-74
    • /
    • 2016
  • Hydraulic fracturing of wells during oil and gas (O&G) exploration consumes large volumes of fresh water and generates larger volumes of contaminated wastewater with high salinity. It is critical to treat and reuse the O&G wastewater in a cost-effective and environmentally sound manner for sustainable industrial development and for meeting stringent regulations. Recently, forward osmosis (FO) has been examined if it is a promising solution for treatment and desalination of complex industrial streams and especially fracturing flowback and produced waters. In the present study, the performances of a plate-and-frame FO membrane element and a module (6 elements combined in series) were investigated for concentrating high TDS wastewater. An FO module has achieved up to 64 % water recovery (i.e., concentration factor of 2.76) from 10,000 ppm wastewaters and can concentrate feed streams salinities to greater than 30,500 ppm.

Assessment of Power Generation by Pressure Retarded Osmosis Process from Spiral-Wound Membrane Pilot-Plant (나권형 모듈을 이용한 압력지연삼투 공정의 에너지생산에 관한 연구)

  • Go, Gil hyun;Park, Tae shin;Kang, Lim seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.476-481
    • /
    • 2016
  • Pressure retarded osmosis (PRO) is a quite new technique for power generation using an osmotically driven membrane process. In the PRO process, water permeates through a semipermeable membrane from a low concentration feed solution to a high concentration draw solution due to osmotic pressure. This study carried out to evaluate the performance of the 8 in spiral wound membrane module using reverse osmosis concentrate for a draw solution and reverse osmosis permeate for a feed solution. Three different flowrates of draw and feed solution, such as 2.4 L/min, 5.0 L/min, and 10.0 L/min were used to estimate the power density and water flux under various range of hydraulic pressure differences between 5 bar and 30 bar. In addition, the effects of feed and draw solution concentration, flowrate, and mixing ratio on 8 in spiral wound PRO membrane module performance were investigated in this study. As major results, increases of the draw solution concentration lead to the improvement of power denstiy, and water flux. Also, increase of flowrate resulted in the improvement of power density and water flux. In addition, optimal mixing ratio of draw and feed solution inlet flowrate was found to be 1:1 to attain a maximum power denstiy.