• Title/Summary/Keyword: Osmotic Power Generation

Search Result 7, Processing Time 0.02 seconds

Performance Analysis of a Micro-Hydro Pelton Turbine for the Osmotic Power Generation (삼투압발전용 마이크로 펠턴터빈의 성능해석)

  • Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.18-22
    • /
    • 2011
  • This paper presents the transient performance analysis of a micro-hydro Pelton turbine for the osmotic power generation using the commercially available computational fluid dynamics (CFD) code, ANSYS CFX. The detailed flow field in the micro Pelton turbine with a single-jet is investigated by the CFD code adopted in the present study. Predicted characteristic curves agree fairly well with measured data for a prototype Pelton turbine over the normal operating conditions. The computational analysis method presented herein can be effectively applied to the hydraulic design optimization process of general purpose Pelton turbine runners.

Study on Water / Energy / Mutual-changing Technology by RO/PRO Process (RO/PRO 공정에 의한 물/에너지/상호변환기술에 관한 연구)

  • Choi, Youngkwon;Yun, Taekgeun;Sohn, Jinsik;Lee, Sangho;Choi, June-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • Water is an integral part of energy production because it is used directly in many power generation systems such as hydroelectric power plants and thermoelectric power plants. Water is also used extensively in energy-resource extraction, oil, natural gas, and alternative fuels refining and processing. Recently, osmotic power systems using seawater and freshwater has been also investigated to produce electricity in a sustainable way. This study focused on the use of RO and PRO for the mutual conversion of water and energy. This system allows the production of water from seawater if there is not enough water. It can also generate electricity from salinity gradient of brine water and fresh water if there is not enough energy. To demonstrate the feasibility of this technology, a set of laboratory-scale experiments were carried out using a specially-designed RO/PRO system. The efficiency of energy conversion was theoretically estimated based on the results from the experiments. The results indicated that water and energy could be easily converted using a single device. Nevertheless, a lack of optimum membrane for this purpose was identified as a major barrier for practical application.

MXene Based Composite Membrane for Water Purification and Power Generation: A Review (정수 및 발전을 위한 맥신(MXene) 복합막에 관한 고찰)

  • Seohyun Kim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.181-190
    • /
    • 2023
  • Wastewater purification is one of the most important techniques for controlling environmental pollution and fulfilling the demand for freshwater supply. Various technologies, such as different types of distillations and reverse osmosis processes, need higher energy input. Capacitive deionization (CDI) is an alternative method in which power consumption is deficient and works on the supercapacitor principle. Research is going on to improve the electrode materials to improve the efficiency of the process. A reverse electrodialysis (RED) is the most commonly used desalination technology and osmotic power generator. Among many studies conducted to enhance the efficiency of RED, MXene, as an ion exchange membrane (IEM) and 2D nanofluidic channels in IEM, is rising as a promising way to improve the physical and electrochemical properties of RED. It is used alone and other polymeric materials are mixed with MXene to enhance the performance of the membrane further. The maximum desalination performances of MXene with preconditioning, Ti3C2Tx, Nafion, and hetero-structures were respectively measured, proving the potential of MXene for a promising material in the desalination industry. In terms of osmotic power generating via RED, adopting MXene as asymmetric nanofluidic ion channels in IEM significantly improved the maximum osmotic output power density, most of them surpassing the commercialization benchmark, 5 Wm-2. By connecting the number of unit cells, the output voltage reaches the point where it can directly power the electronic devices without any intermediate aid. The studies around MXene have significantly increased in recent years, yet there is more to be revealed about the application of MXene in the membrane and osmotic power-generating industry. This review discusses the electrodialysis process based on MXene composite membrane.

The effect of backing layer for pro membranes and modules (PRO 분리막 및 모듈성능에 지지체가 미치는 영향)

  • Han, Man Jae;Jeon, Eun Joo;Sim, Yeon-Ju;Lee, Jong Hwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.553-559
    • /
    • 2016
  • There has been increasing global interest in the environmental pollution problems produced by fossil fuel consumption and greenhouse gas emissions. In order to tackle these issues, new renewable energy such as solar, wind, bio gas, fuel cell and pressure retarded osmosis(PRO) have been developed extensively. Among these energy sources, PRO is one of the salinity gradient power generation methods. In PRO, energy is obtained by the osmotic pressure generated from the concentration difference between high and low concentration solutions separated by a semipermeable membrane. The development for high power density PRO membranes is imperative with the purpose of commercialization. This study investigates development of thin film composite PRO membrane and spiral wound module for high power density. Also, the influence of membrane backing layer on power density was identified, and the characteristic factors of PRO membranes was determined. Different backing layers were used to improve power density. As expected, the PRO membrane with more porous backing layer showed higher power density.

Effect of the Temperature and Pressure on Pressure Retarded Osmosis Performance (온도와 압력 변화가 압력지연삼투 공정 성능에 미치는 영향)

  • Sim, Jin-woo;Nam, Sook-Hyun;Koo, Jae-Wuk;Kim, Eun-Ju;Yoon, Young Han;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.321-325
    • /
    • 2016
  • The Pressure Retarded Osmosis (PRO) is the next generation desalination technique and is considered as a eco-friendly energy. This was conducted to evaluate the effect of the temperature and pressure on the PRO performance. The flux of the permeation was measured under different operating conditions and estimated the power density. An improvement of PRO performance is depend on increasing solution temperature and optimum pressure. The effect of increasing feed solution temperature has stronger impact on the PRO performance comparing to the draw solution temperature. The reason of the results was due to the change of osmotic power, viscosity, water permeability and structure parameter(s).

Assessment of Power Generation by Pressure Retarded Osmosis Process from Spiral-Wound Membrane Pilot-Plant (나권형 모듈을 이용한 압력지연삼투 공정의 에너지생산에 관한 연구)

  • Go, Gil hyun;Park, Tae shin;Kang, Lim seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.476-481
    • /
    • 2016
  • Pressure retarded osmosis (PRO) is a quite new technique for power generation using an osmotically driven membrane process. In the PRO process, water permeates through a semipermeable membrane from a low concentration feed solution to a high concentration draw solution due to osmotic pressure. This study carried out to evaluate the performance of the 8 in spiral wound membrane module using reverse osmosis concentrate for a draw solution and reverse osmosis permeate for a feed solution. Three different flowrates of draw and feed solution, such as 2.4 L/min, 5.0 L/min, and 10.0 L/min were used to estimate the power density and water flux under various range of hydraulic pressure differences between 5 bar and 30 bar. In addition, the effects of feed and draw solution concentration, flowrate, and mixing ratio on 8 in spiral wound PRO membrane module performance were investigated in this study. As major results, increases of the draw solution concentration lead to the improvement of power denstiy, and water flux. Also, increase of flowrate resulted in the improvement of power density and water flux. In addition, optimal mixing ratio of draw and feed solution inlet flowrate was found to be 1:1 to attain a maximum power denstiy.

Review on the Recent Membrane Technologies for Pressure Retarded Osmosis (압력지연삼투를 위한 최근 분리막 기술에 관한 총설)

  • Jeon, Sungsu;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.253-261
    • /
    • 2021
  • Solutions to water pollution, global warming, and climate change have been currently discussed. Pressure retarded osmosis (PRO) using a difference in salt concentration between two fluids is proposed to meet the demand for clean water and produce eco-friendly energy. Although PRO has been researched continuously, it has not been commercialized yet due to limitations such as lack of technology and the high price of membranes. Meanwhile, the membrane is one of the most significant parts of the PRO engine and salinity gradient power (SGP) technology. Research continues to technologically develop graphene oxide membranes and nanocomposite membranes used in salinity gradient power generation. Studies on efficient membranes, solvents, and solutes are active to enable high energy efficiency of the osmotic heat engine even at low temperatures of waste. Studies have been conducted on reducing internal concentration polarization and increasing power density by using membranes with balanced permeability and selectivity. In this review, dealing with these studies, we discuss the types of PRO membranes, theoretical modeling of technologies through efficient membranes, and other technologies to develop the process efficiency.