• 제목/요약/키워드: Oscillatory flow

검색결과 233건 처리시간 0.026초

수평 환형 공간에서의 진동하는 열대류 (OSCILLATORY THERMAL CONVECTION IN A HORIZONTAL ANNULUS)

  • 유주식
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.49-55
    • /
    • 2006
  • This study investigates the oscillatory thermal convection of a fluid with Pr=0.02 in a wide-gap horizontal annulus with constant heat flux inner wall. When Pr=0.02, dual steady-state flows are not found. After the first Hopf bifurcation from a steady to a time-periodic flow, five successive period-doubling bifurcations are recorded before chaos. The power spectrum shows the $period-2^4\;and\;2^5$ flows clearly, and a window of period $3{\times}2^3$ flow is found in the chaotic regime. The approximate value of the Feigenbaum number for the last three period-doubling bifurcations is 4.76. The transition route to chaos of the present simulations is consistent with the period-doubling route of Feigenbaum.

재생기를 가진 실린더내의 왕복유동에 관한 열전달 (Heat Transfer of Oscillating Flow in a Cylinder with Regenerator)

  • 김진호;이재헌;강병하
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1758-1769
    • /
    • 1995
  • The heat transfer of oscillating flow in a cylinder with regenerator was investigated by the moving boundary technique. The flow in regenerator was modeled by means of Brinkman Forchheimer-Extended-Darcy equation . Results showed that when piston moved toward right, velocity vectors near cylinder wall at left piston and right side of regenerator inclined to symmetric axis and velocity vectors near cylinder wall at right piston and left side of regenerator inclined to cylinder wall. And the time averaged Nusselt number was increased by 46.73% when the oscillatory frequency became twice and decreased by 31.46% when the oscillatory frequency became half. The time averaged Nusselt number was increased by 18.09% when thickness of the regenerator became twice and decreased by 7.53% when thickness of the regenerator became half. But mesh size of regenerator hardly affected the Nusselt number. And efficiency of regenerator was larger as the oscillatory frequency was smaller, thickness and mesh size of regenerator was larger.

노즐 압력비와 충돌면까지의 거리 변화에 따른 초음속 충돌 제트 유동의 진동 특성 (Oscillatory Features of Supersonic Impinging Jet Flows; Effects of the Nozzle Pressure Ratio and Nozzle Plate Distance)

  • 김성인;박승오;이광섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.154-159
    • /
    • 2004
  • Numerical simulations of supersonic impinging jet flows are carried out using the axisymmetric Navier-Stokes code. This paper focuses on the oscillatory flow features associated with the variation of the nozzle pressure ratio and nozzle-to-plate distance. Frequencies of the surface pressure oscillation from computational results are in accord with the measured impinging tones for various cases of nozzle-to-plate distance. The variation of this frequency with distance show a staging behavior. Computed results for the case of nozzle pressure ratio variation for a fixed nozzle-to-plate distance also demonstrate a staging behavior. These two seemingly different staging behaviors are found to obey the same frequency-distance characteristics when the frequency and the distance are normalized by using the length of the shock cell.

  • PDF

조화진동유동을 포함한 직선파이프계의 혼돈운동 연구 (Chaotic Vibration of a Straight Pipe Conveying Oscillatory Flow)

  • 박철희;홍성철;정욱
    • 소음진동
    • /
    • 제6권2호
    • /
    • pp.233-244
    • /
    • 1996
  • In this paper chaotic mothions of a straight pipe conveying oscillatory flow and being subjected to external forces such as earthquake are theoretically investigated. The nonlinear partial differential equation of motion is derived by Newton's method. In this equation, the nonlinear curvature of the pipe and the thermal expansion effects are contained. The nonlinear ordinary differential equation transformed from that partial differential equation is a type of Hill's equations, which have the parametric and external exciation term. This original system is transfered to the averaged system by the averaging theory. Bifurcation curves of chaotic motion of the piping system are obtained in the general case of the frequency ratio, n by applying Melnikov's method. Numerical simulations are performed to demonstrate theorectical results and show strange attactors of the chaotic motion.

  • PDF

Magnetorheological fluids subjected to tension, compression, and oscillatory squeeze input

  • El Wahed, Ali K.;Balkhoyor, Loaie B.
    • Smart Structures and Systems
    • /
    • 제16권5호
    • /
    • pp.961-980
    • /
    • 2015
  • Magnetorheological (MR) fluids are capable of changing their rheological properties under the application of external fields. When MR fluids operate in the so-called squeeze mode, in which displacement levels are limited to a few millimetres but there are large forces, they have many potential applications in vibration isolation. This paper presents an experimental and a numerical investigation of the performance of an MR fluid under tensile and compressive loads and oscillatory squeeze-flow. The performance of the fluid was found to depend dramatically on the strain direction. The shape of the stress-strain hysteresis loops was affected by the strength of the applied field, particularly when the fluid was under tensile loading. In addition, the yield force of the fluid under the oscillatory squeeze-flow mode changed almost linearly with the applied electric or magnetic field. Finally, in order to shed further light on the mechanism of the MR fluid under squeeze operation, computational fluid dynamics analyses of non-Newtonian fluid behaviour using the Bingham-plastic model were carried out. The results confirmed superior fluid performance under compressive inputs.

An Analytical Investigation on the Build-up of the Temperature Field due to a Point Heat Source in Shallow Coastal Water with Oscillatory Alongshore-flow

  • Jung, Kyung-Tae;Kim, Chong-Hak;Jang, Chan-Joo;Lee, Ho-Jin;Kang, Sok-Kuh;Yjm, Ki-Dai
    • Ocean and Polar Research
    • /
    • 제25권1호
    • /
    • pp.63-74
    • /
    • 2003
  • The build-up of the heat field in shallow coastal water due to a point source has been investigated using an analytical solution of a time-integral form derived by extending the solutions by Holley(1969) and also presented in Harleman (1971). The uniform water depth is assumed with non-isotropic turbulent dispersion. The alongshore-flow is assumed to be uni-directional, spatially uniform and oscillatory. Due to the presence of the oscillatory alongshore-flow, the heat build-up occurs in an oscillatory manner, and the excess temperature thereby fluctuates in that course and even in the quasi-steady state. A series of calculations reveal that proper choices of the decay coefficient as well as dispersion coefficients are critical to the reliable prediction of the excess temperature field. The dispersion coefficients determine the absolute values of the excess temperature and characterize the shoreline profile, particularly within the tidal excursion distance, while the decay coefficient determines the absolute value of the excess temperature and the convergence rate to that of the quasi-steady state. Within the e-folding time scale $1/k_d$ (where $k_d$ is the heat decay coefficient), heat build-up occurs more than 90% of the quasi-steady state values in a region within a tidal excursion distance (L), while occurs increasingly less the farther we go to the downstream direction (about 80% at 1.25L, and 70% at 1.5L). Calculations with onshore and offshore discharges indicate that thermal spreading in the direction of the shoreline is reduced as the shoreline constraint which controls the lateral mixing is reduced. The importance of collecting long-term records of in situ meteorological conditions and clarifying the definition of the heat loss coefficient is addressed. Interactive use of analytical and numerical modeling is recommended as a desirable way to obtain a reliable estimate of the far-field excess temperature along with extensive field measurements.

외부유동에 의한 캐버티 내의 비정상 유동특성 (Unsteady Flow in a Cavity Induced by An Oscillatory External Flow)

  • 서용권;박준관;문종춘
    • 한국해양공학회지
    • /
    • 제10권3호
    • /
    • pp.105-116
    • /
    • 1996
  • In this paper, we report the experimental results for the flow pattern and the material transport around a cavity subject to a sinusoidal external flow at the far region to ward the open side of the cavity. A tilting mechanism is used to generate a oscillatory flow inside a shallow rectangular container having a cavity at one side. The surface flow visualization is performed to obtain the unsteady behavior of vortices generated at two edges situated at the entrance of the cavity. It was found that at the period 4.5 sec., the behavior of the vortices is asymmetric, and there exists a steady residual flow in the cavity. The bottom flow patterns are also visualized. There are two regions outside of the cavity where the bottom fluid particles concentrate. The material transport in this flow model is very peculiar; fluid particles in the cavity flows outward through the passage along the walls starting from the edges, and particles in the outer region approach the cavity from the central region.

  • PDF

곡관덕트에서 난류진동유동의 전단응력분포와 압력분포 (Wall shear stress and Pressure Distributions of Developing Turbulent Oscillatory Flows in a Square sectional Curved Duct)

  • 이홍구;손현철;이행남;박길문
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.380-385
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flow in a square-sectional $180^{\circ}$ curved duct are investigated experimentally. In order to measure wall shear stress and pressure distributions, experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system. The wall shear stress measuring point bend angle of the $150^{\circ}$ and pressure distribution of the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) at $10^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows: A wall shear stress value in an inner wall is larger than that in an outer wall, except for the phase angle (${\omega}t/{\pi}/6$) of 3, because of the intensity of secondary flow. The pressure distributions are the largest in accelerating and decelerating regions at the bend angle(${\phi}$) of $90^{\circ}$ and pressure difference of inner and outer walls is the largest before and after the ${\phi}=90^{\circ}$.

  • PDF

수평격판을 갖는 정사각형 밀폐공간내에서 자연대류 유동 및 열전달 (Natural Convective Flow and Heat Transfer in a Square Enclosure with a Horizontal Partition)

  • 정인기;김점수;송동주
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2304-2314
    • /
    • 1993
  • Natural convective flow and heat transfer in a two-dimensional square enclosure fitted with a horizontal partition are investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was situated perpendicularly at the one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of length, position and thermal conductivity of the partition, and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection is resulted in a sudden rise of overall heat transfer, but the increase of length of partition is significantly restrained the increase of Nusselt number. The maximum heat transfer was shown just before the transition of the direction of oscillating flow. An oscillatory motion of flow was perfectly shown the stability with the decrease of the length of partition and Rayleigh number. Also, the heat transfer was raised with the increase of the thermal conductivity in proportion to the increase of the length of partition. The stability and oscillation of flow are affected by the position of partition.

Oscillatory Thermocapillary Flow in Cylindrical Columns of High Prand시 Number Fluids

  • Lee, Kyu-Jung;Yasuhiro Kamotani;Simon Ostrach
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.764-775
    • /
    • 2001
  • Oscillartory thermocapillary flow of high Prandtl number fluids in the half-zone configuration is investigated. Based on experimental observations, one oscillation cycle consists of an active period where the surface flow is strong and the hot corner region is extended and a slow period where the opposite occurs. It is found that during oscillations the deformation of free surface plays an important role and a surface deformation parameter S correlates the experimental data well on the onset of oscillations. A scaling analysis is performed to analyze the basic steady flow in the parametric ranges of previous ground-based experiments and shows that the flow is viscous dominant and is mainly driven in the hot corner. The predicted scaling laws agree well with the numerical results. It is postulated that the oscillations are caused by a time lag between the surface and return flows. A deformation parameter S represents the response time of the return flow to the surface flow.

  • PDF