• Title/Summary/Keyword: Oscillation frequency

Search Result 925, Processing Time 0.025 seconds

Power Control Strategies for Single-Phase Voltage-Controlled Inverters with an Enhanced PLL

  • Gao, Jiayuan;Zhao, Jinbin;He, Chaojie;Zhang, Shuaitao;Li, Fen
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.212-224
    • /
    • 2018
  • For maintaining a reliable and secure power system, this paper describes the design and implement of a single-phase grid-connected inverter with an enhanced phase-locked loop (PLL) and excellent power control performance. For designing the enhanced PLL and power regulator, a full-bridge voltage-controlled inverter (VCI) is investigated. When the grid frequency deviates from its reference values, the output frequency of the VCI is unstable with an oscillation of 2 doubling harmonics. The reason for this oscillation is analyzed mathematically. This oscillation leads to an injection of harmonics into the grid and even causes an output active power oscillation of the VCI. For eliminating the oscillation caused by a PLL, an oscillation compensation method is proposed. With the proposed method, the VCI maintains the original PLL control characteristics and improves the PLL robustness under grid frequency deviations. On the basis of the above analysis, a power regulator with the primary frequency and voltage modulation characteristics is analyzed and designed. Meanwhile, a small-signal model of the power loops is established to determine the control parameters. The VCI can accurately output target power and has primary frequency and voltage modulation characteristics that can provide active and reactive power compensation to the grid. Finally, simulation and experimental results are given to verify the idea.

Fluidic oscillation characteristics of plastic flow meter with the variation of cross-sectional shape of splitters (스플리터 단면형상변화에 따른 플라스틱 유량계의 유동진동특성)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.56-62
    • /
    • 2021
  • In this study, design technology of a non-mechanical flow meter using fluidic oscillation generated during the fluid flow in the chamber was investigated. To with respect to design a splitter, which is the most important factor in fluid oscillation, a transient flow simulation analysis was performed for three types of shapes and changes in inlet flow velocity. The oscillation characteristics with respect to the time in each case were compared, and it was confirmed that the SM03 model was the best among the presented models. In addition, the FFT analysis of the fluid oscillation results for the SM03 model was used to obtain a linear correlation between the flow velocity change and the maximum frequency, and a frequency of 20.957 (Hz/m/s) per unit flow velocity was obtained. Finally, injection molding simulation and molding experiment of the chamber with the designed splitter were performed.

A Numerical Study on the Flow Characteristics of a Valveless Micropump (무밸브 마이크로 펌프의 유동 특성에 관한 수치해석)

  • Chin, Sang-Mun;Hur, Nahmkeon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.748-753
    • /
    • 2004
  • The performance of a valveless micropump driven by chamber wall oscillation was numerically investigated for various frequency and amplitude of the oscillation. The numerical study was performed in the range of oscillation frequency from 200Hz to 1000Hz and amplitude from $1{\mu}m$ to $15{\mu}m$. And optimal values for the parameters are found. At the oscillation frequency 600Hz, the net flow rate of micropump shows a maximum value. Also the results show good agreement with the experimental results. The total flow rate was increased with the oscillation amplitude. However, the net flow rate was found to be decreased over $7{\mu}m$.

  • PDF

A Study on the Influence of Mutual Inductance between Wayside Transmitter and On-board Receiver upon Frequency Response in ATS Device (ATS 장치에서 지상자와 차상자 사이의 상호인덕턴스가 주파수 응답에 미치는 영향)

  • Kim, Min-Seok;Kim, Min-Kyu;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.384-393
    • /
    • 2012
  • Railroad signaling systems perform controlling the distance and routes between trains. Signaling methods on the wayside are to control passively the train speed by using signal flags which are installed on the wayside. ATS(Automatic Train Stop) device is used as the signaling method on the wayside in Korea. The ATS device is assistance equipment of engineers. Signal information is transmitted by combining mutual inductance between the wayside transmitter and on-board receiver. The wayside transmitter performs changing oscillation frequency according to the signal information. The on-board receiver performs controlling the train by receiving the frequency. Currently, the oscillation frequency on the on-board receiver is 78[kHz] in case of normal state. When the on-board receiver is over the wayside transmitter, the oscillation frequency is changed by capacitors of the wayside transmitter according to signal flags. In case of changing the oscillation frequency, the waveform is modified in the wayside transmitter and on-board receiver. This phenomenon is that other signals or communication frequency are included. In this paper, electric model between the wayside transmitter and on-board receiver is suggested and frequency response in the wayside transmitter and on-board receiver including other signals is estimated by the coupling coefficient. Also, the value of coupling coefficient is proposed to exclude other signals and demonstrated by using Matlab and PSpice program.

A New DPWM Method to Suppress the Low Frequency Oscillation of the Neutral-Point Voltage for NPC Three-Level Inverters

  • Lyu, Jianguo;Hu, Wenbin;Wu, Fuyun;Yao, Kai;Wu, Junji
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1207-1216
    • /
    • 2015
  • In order to suppress the low frequency oscillation of the neutral-point voltage for three-level inverters, this paper proposes a new discontinuous pulse width modulation (DPWM) control method. The conventional sinusoidal pulse width modulation (SPWM) control has no effect on balancing the neutral-point voltage. Based on the basic control principle of DPWM, the relationship between the reference space voltage vector and the neutral-point current is analyzed. The proposed method suppresses the low frequency oscillation of the neutral-point voltage by keeping the switches of a certain phase no switching in one carrier cycle. So the operating time of the positive and negative small vectors is equal. Comparing with the conventional SPWM control method, the proposed DPWM control method suppresses the low frequency oscillation of the neutral-point voltage, decreases the output waveform harmonics, and increases both the output waveform quality and the system efficiency. An experiment has been realized by a neutral-point clamped (NPC) three-level inverter prototype based on STM32F407-CPLD. The experimental results verify the correctness of the theoretical analysis and the effectiveness of the proposed DPWM method.

A study of Instability on Oscillating Laminar Premixed Flames (진동하는 층류예혼합화염의 불안정성에 관한 연구)

  • Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.8-15
    • /
    • 2008
  • When a circular cylinder is placed at the center of a slot burner nozzle, once stable Woflhard-Parker type laminar lean premixed flame is changed to an oscillating flame with self-induced noise. The wrinkled flame surface showed the same pattern and frequency of the Karman vortex street at the downstream of a circular cylinder. The interaction of flame with Karman vortex street is observed to be responsible for flame oscillation. The measured flame oscillation frequency is very similar to the estimated Karman vortex shedding frequency based on the St-Re relationship of the flow past circular cylinder, which could be considered as a strong evidence for the interaction between laminar pre-mixed flame and a Karman vortex street. As Reynolds number increases oscillation frequency decreases and the self-induced noise level increases as well as the flame front is more severly wrinkled. This result suggests that the flame/vortex interaction becomes more active at higher Re.

  • PDF

Characteristics of Thermoacoustic Oscillation in Ducted Flame Burner (관형 연소기의 열음향학적 특성에 관한 연구)

  • 조상연;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.621-626
    • /
    • 1997
  • Combustion instability is a common phenomenon in a ducted flame burner and is known as accompanying low frequency oscillation. This is due to the interaction between unsteady heat release rate and sound pressure field, that is, thermoacoustic feedback. In Rayleigh criterion, combustion instability is triggered when the heat additions is in phase with acoustic oscillation. A Rijke type burner with a pre-mixed flame is built for investigating the effect of Reynolds number and equivalence ratio on thermoacoustic oscillation. In addition, the effect of wall temperature is presented. The results suggest that the frequency of max. oscillation is dependent on Reynolds number and equivalence ratio whereas its magnitude is not a strong function of these two parameters. On the other hand, the wall temperature distribution has much strong effects on the oscillation, even creates different mode of acoustic resonance.

  • PDF

5.8 ㎓ Band Frequency Synthesizer using Harmonic Oscillation (하모닉 발진을 이용한 5.8 ㎓ 대역 주파수 합성기)

  • 최종원;신금식;이문규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.421-427
    • /
    • 2004
  • A low cost solution employing harmonic oscillation to the frequency synthesizer at 5.8 ㎓ is proposed. The proposed frequency synthesizer is composed of 2.9 ㎓ PLL chip, 2.9 ㎓ oscillator, and 5.8 ㎓ buffer amplifier The measured data shows a frequency Outing range of 290 ㎒, ranging from 5.65 to 5.94 ㎓ about 0.5 ㏈m of output power, and a phase noise of -107.67 ㏈c/㎐ at the 100 ㎑ offset frequency. All spurious signals including fundamental oscillation power(2.9 ㎓) are suppressed at least 15 ㏈c than the desired second harmonic signal.

A cause analysis of Noise & Vibration of Gas Heater (가스히터의 소음 진동 원인 분석)

  • Koh, Jae-Pil;You, Hyun-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.9-13
    • /
    • 2009
  • A cause of noise and vibration which come from a Combustion of gas heater are a combustion roar and Combustion oscillation. A character of a combustion roar is that sound pressure is distribute with broad band frequency. otherwise, The presence of combustion oscillation caused by positive Feed Back in Combustion Chamber break out a noise and vibration. Accordingly, The method that be solved a noise and vibration is to make each natural frequency different frequency. first, in order to solve problem, we control ratio of fuel and air. that is, Keep away resonance. second, in order to changing natural frequency of Combustion Chamber, We changed the shape of Economizer.

  • PDF

Effects of the length the MSL on the oscillation characteristic of the VCO (VCO의 MSL길이가 발진특성에 미치는 영향)

  • 이동희;정진휘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.721-724
    • /
    • 2001
  • In this paper, we present the effect the length the MSL(Microstrip Line) on the oscillation characteristic of the fabricated VCOs(Voltage Controlled Oscillator) designed and analyzed by RF circuit simulator Serenade(ANSOFT Co.) and fabricated by screen printing method on the alumina substrate. We have fabricated VCOs with 3 different MSL length and each MSL length of the VCO is 140mi1, 280mil and 560mi1. The oscillation frequency of each sample(VCO) was tuned to UHF band(750MHz∼900MHz) varying the capacitance. The experimental result shows the phase noise -82∼-97[dBc/Hz] at a 50 [kHz] offset frequency, the pushing figure 94∼318[kHz] at 3${\pm}$0.15[V] and the harmonics 13∼21 [dBc] between MSL length 140mi1s and 560mi1. The frequency and output variation width are 779∼898[MHz], -36∼-33[dBm] at MSL length 140mi1; 818∼836[MHz], -27.19∼-27.06[dBm] at 280mi1;751.54∼751.198[MHz],-33.44∼ -33.31[dBm] at 560mi1. we examined 3 VCOs oscillation characteristic difference through comparison with phase noise, oscillation power and frequency by control voltage change, harmonics and pushing figure for each sample.

  • PDF