• Title/Summary/Keyword: Oscillating hydrofoil

Search Result 4, Processing Time 0.022 seconds

Thrust Caused by Oscillating Two-Dimensional Hydrofoil Moving in Propagating Unsteady Flow Field (전파하는 변동유장 중 전진하며 동요하는 2차원 수중 날개에 의한 추력)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.40-46
    • /
    • 2012
  • This paper considers a two-dimensional hydrofoil that is fully submerged and oscillating with forward speed. The flow field is assumed to be a propagating vertical velocity field. Using the perturbation theory, the problem is linearized, and the leading-order lift force is surveyed. The thrust force is analytically derived as the second-order horizontal force. As an example, the lift and thrust for a flapping flat plate in heaving and pitching modes are analyzed. The parameters affecting the thrust are listed. The thrust is expressed in terms of the quadratic transfer functions in relation to the disturbances. The quadratic transfer functions are studied parametrically to assess the most favorable thrust.

Experimental Study on the Structure of Tip Vortex Generated by an Oscillating Rectangular Hydrofoil (진동하는 사각날개의 날개끌 와류 구조에 관한 실험적 연구)

  • Hyun, Beom-Soo;Kim, Moo-Rong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.59-67
    • /
    • 2006
  • Evolution of the unsteady three-dimensional tip vortex in the wake field of a rectangular NACA 0012 hydrofoil in pitching motion is investigated. Measurements were made in CWC using PIV. A hydrofoil has an aspect ratio of 5 with chord length of 1 Oem. Pitching angle and mean angle of attack were set to $\pm$ $5^{\circ}$ and $10^{\circ}$, respectively. Frequency of oscillation was varied from 0.1 Hz to 1 Hz in order to study the effect of unsteadiness imposed by various frequencies, which correspond to the reduced frequency of K=0.1, 0.21, 0.52 and 1.05. Reynolds number based on chord length and free-stream velocity was $30\times$$10^{4}$ Phase-averaging technique was employed. Unsteadiness and variation of the size and characteristics of tip vortex at different reduced frequency were discussed.

Characteristics of Vortical Jet Structures of a Hydrofoil

  • Yang, Chang-Jo;Kim, You-Taek;Choi, Min-Seon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.842-851
    • /
    • 2007
  • Oscillating foil propulsion, the engineering application of fish-like movement of a hydrofoil, has received in recent decades as a possible competitor for propellers. The oscillating foil produces an effective angle of attack, resulting in a normal force vector with thrust and lift components, and it can be expected to be a new highly effective propulsion system. We have explored propulsion hydrodynamics as a concept in wake flow pattern. The present study has been examined various conditions such as oscillating frequencies and amplitudes in NACA0010 profile. Flow visualizations showed that high thrust was associated with the generation of moderately strong vortices, which subsequently combine with trailing-edge vorticity leading to the formation of a reverse $K\acute{a}rm\acute{a}n$ vortex street. Vortex generation was inherent to jet production and playeda fundamental role in the wake dynamics. And it was shown that the strong thrust coefficient obtained as the Strouhal number was larger.

Solution of Unsteady Hydrofoil Problems by Discrete Vortex Method with Application to Fish Propulsion -2nd Report; Expension to 3-Dimensonal Problems- (특이점분포방식(特異點分布方式)에 의한 비정상수중익문제(非正常水中翼問題)의 해석(解析) -제2보(第2報) 3차원(次元) 문제(問題)로의 확장(擴張)-)

  • Hyoung-Tae,Kim;Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.3
    • /
    • pp.1-16
    • /
    • 1983
  • In this paper a discrete-vortex-method(DVM) is presented for investigating the hydromechanics of the planar hydrofoils performing the undulatory motion which can be related to fish propulsion with carangiform mode. This is an extention of the authors previous work(1981) on the 2-dimensional hydrofoil. The applicability and accuracy of the present method are shown by means of comparing the calculated lifts and moments, and their distributions over the planforms with those in available references, for aspect ratio 1.0 and 2.0 rectangular hydrofoils and a swept-back hydrofoil of aspect ratio 2.0 from reduced frequency 0.1 to 0.5. The agreement is considered good. To assure the applicability of the DVM to the study of the propulsive performance of the oscillating planar hydrofoils, the convergence tests are performed. The mean thrust(in pure heave, this is wholly due to leading-edge suction), the mean power to maintain the motion and the hydromechanical efficiency are calculated for the rectangular hydrofoil of aspect ratio 8.0 and these are compared with the calculations by Chopra & Kambe(1977) and Lan(1979) for the same cases.

  • PDF