• 제목/요약/키워드: Oscillating flow

검색결과 334건 처리시간 0.021초

진동하는 원주주위 유동의 직접수치해석 (Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder)

  • 강신정;;;남청도;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.181-188
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Wavier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to $25\%$ of the cylinder diameter and in the case of the lock-in region it is $60\%$. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

동축류 버너에서 질소 희석된 연료의 부상 특성 (Characteristics of Lifted Flame in Coflow Jets for Highly Diluted Fuel)

  • 원상희;차민석;이병준;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.9-15
    • /
    • 2000
  • Characteristics of lifted flames for highly diluted propane and methane with nitrogen in coflowing air is experimentally investigated. In case of propane, for various fuel mole fractions and jet velocities, three distinctive types of flames are observed; nozzle attached flames, stationary lifted flames, and oscillating lifted flames. When fuel jet velocity is much smaller than coflow velocity, the base of nozzle attached flame has a tribrachial structure unlike usual coflow difusion flames. Based on the balance mechanism of the propagation speed of tribrachial flame with flow velocity, jet velocity is scaled with stoichiometric laminar burning velocity. Results show that there exists two distinctive lifted flame stabilization; stabilization in the developing region and in the developed region of jets depending on initial fuel mole fraction. It has been found that lifted flame can be stabilized for fuel velocity even smaller than stoichiometric laminar burning velocity. This can be attributed to the buoyancy effect and flow visualization supports it. Lifted flames are also observed for methane diluted with nitrogen. The lifted flames only exist in the developing region of jet.

  • PDF

자기장 분포가 확산화염의 연소특성에 미치는 영향: 자기장 On/Off 주기와 Duty Ratio의 역할 (The Influence of Magnetic Field on Diffusion Flames: Role of Magnetic Field On/Off Frequency and Duty Ratio)

  • 이원남;배승만
    • 한국연소학회지
    • /
    • 제17권1호
    • /
    • pp.58-65
    • /
    • 2012
  • The influence of magnetic field on propane and acetylene diffusion flames have been experimentally investigated using an electromagnetic system. Periodically induced magnetic field having various frequencies and duty ratios was established in square wave form. The maximum intensity and gradient of magnetic field were 1.3 T and 0.27 T/mm, respectively. The width of a propane flame was reduced up to 4.5% and the brightness was enhanced up to 25% when the magnetic field was induced. The soot emission from an acetylene flame was ceased when magnetic field was induced. The alteration of flow field, which is due to the paramagnetic characteristics of oxygen molecule, is most likely to be responsible for the change in flame size and brightness. The effect of magnetic field on diffusion flames, which competes with the gravitational effect, was more apparent from a smaller size flame. The magnetic field effect, therefore, could be important under microgravity conditions. Since the time required to alter the flow field must be finite, the magnetic field effect is likely to be less significant for a periodically oscillating magnetic field at a high frequency or having a small duty ratio.

정적 Blowing/Suction을 이용한 동실속 유동 제어에 관한 수치적 연구 (Numerical Study of Flow Control of Dynamic Stall Using Continuous Blowing/Suction)

  • 최성윤;권오준;김재무
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.115-119
    • /
    • 2004
  • The effect of a continuous blowing or suction on an oscillating 2-D NACA0012 airfoil was investigated numerically for the dynamic stall control. The influence of control parameter variation was also studied in the view point of aerodynamic characteristics. The result showed that the blowing control kept a higher lift drag ratio before stall angle but the dynamic stall angle was not exceed to without control result. As the slot position was closer to leading edge, the positive control effect becomes greater. The stronger jet and the smaller jet angel made more favorable roles on the control performance. In the cases of the suction, the overall control features were similar to those of the blowing, but dynamic stall angle was increased, i.e. suction was more effective to control dynamic stall. It was also founded that the suction control was showed better control effect as the slot position moves to trail edge within thirty percentage of chord length. In the simulation for the jet strength and the jet angle control, the same tendencies were observed to those of blowing cases.

  • PDF

해석적 근사해에 근거한 스터링기관의 2차단열해석법 (A Second-Order Adiabatic Analysis Method of Stirling Engines Based on the Approximate Analytical Solution)

  • 유호선
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.787-794
    • /
    • 1992
  • 본 연구에서는 이미 알려진 이상적인 단열모델에 대한 해석적 근사해를 기본 해로 취하고, 열교환과정의 손실 및 작동유체의 유동손실 등 성능에 미치는 영향이 비교적 큰 인자만을 고려하여, 성능을 쉽게 예측할 수 있는 2차단열해석법의 하나를 개발하고자 한다. 방법의 타당성및 적용예를 보이기 위하여 기존의 스터링기관중 각 종제원및 실험결과가 발표되어 있어 비교의 기준으로서 적합한 GPU-3(ground power unit)기관을 대상으로 해석방법을 실제 적용하고 결과를 고찰하기로 한다.

Vortex-Edge의 상호작용에 기인한 유동소음의 전산해석 (Numerical Analysis of Flow-Induced Noise by Vortex-Edge Interaction)

  • 강호근;김은라
    • 한국해양공학회지
    • /
    • 제18권5호
    • /
    • pp.15-21
    • /
    • 2004
  • An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, we present a 2-D edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle, using the finite difference lattice Boltzmann method (FDLBM). We use a modified version of the lattice BGK compressible fluid model, adding an additional term and allowing for longer time increments, compared to a conventional FDLBM, and also use a boundary fitted coordinates system. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}$ = 23. At a stand-off distance, the edge is inserted along the centerline of the jet, and a sinuous instability wave, with real frequency, is assumed to be created in the vicinity of the nozzle and propagates towards the downstream. We have succeeded in capturing very small pressure fluctuations, resulting from periodical oscillations of a jet around the edge. The pressure fluctuations propagate with the speed of sound. Its interaction with the wedge produces an non-rotational feedback field, which, near the nozzle exit, is a periodic transverse flow, producing the singularities at the nozzle lips.

PIV기법을 이용한정사각실린더의 근접후류에 관한 연구 (III) - 위상평균유동장 - (A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry (III) - Phase Average -)

  • 이만복;김경천
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1527-1534
    • /
    • 2001
  • Phase averaged velocity fields in the near wake region behind a square cylinder have been (successfully) obtained using randomly sampled PIV data sets. The Reynolds number based on the flow velocity and the vertex height was 3,900. To identify the phase information, we examined the magnitude of circulation and the center of peak vorticity. The center of vorticity was estimated from lowpass filtered vorticity contours (LES decomposition) adopting a sub-pixel searching algirithm. Due to the sinusoidal nature of firculation which is closely related to the instantaneous vorticity, the location of peak voticity fits well with a sine curve of the circulation magnitude. Conditionally-averaged velocity fields represent the barman vortex shedding phenomenon very well within 5 degrees phase uncertainty. The oscillating nature of the separated shear layer and the separation bubble at the top surface are clearly observed. With the hot-wire measurements of Strouhal frequency, we found thats the convection velocity changes its magnitude very rapidly from 25 to 75 percent of the free stream velocity along the streamwise direction when the flow passes by the recirculation region.

주기적 국소교란이 난류 경계층에 미치는 영향 (Effects of Periodic Local Forcing on a Turbulent Boundary Layer)

  • 박상현;이인원;성형진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.472-478
    • /
    • 2000
  • An experimental study is performed to analyze flow structures behind a local suction/blowing in a flat-plate turbulent boundary layer, The local forcing is given to the boundary layer flow by means of a sinusoidally oscillating jet issuing from a thin spanwise slot at the wall. The Reynolds number based on the momentum thickness is about $Re_{\theta}=1700$. The effects of local forcing are scrutinized by altering the forcing frequency $(0.011{\leq}f^+{\leq}0.044)$. The forcing amplitude is fixed at $A_0=0.4$. It is found that a small local forcing reduces the skin friction, and this reduction increases with the forcing frequency. A phase-averaging technique is employed to capture the coherent structures. Velocity signals are decomposed into a periodic part and a fluctuating part. An organized spanwise vortical structure is generated by the local forcing. The larger reduction of skin friction for the higher forcing frequencies is attributed to the diminished adverse effect of the secondary vortex. An investigation of the random fluctuation components reveals that turbulent energy is concentrated near the center of vortical structures.

  • PDF

튜브진동 시 판스프링 지지부의 미끄럼변위와 마멸 분석 (Analysis of Slip Displacement and Wear in Oscillating Tube supported by Plate Springs)

  • 김형규;이영호;송주선
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.41-49
    • /
    • 2003
  • Tube oscillation behaviour is experimentally investigated for the study on the fuel rod fretting that is caused by the flow-induced vibration in nuclear reactor. The experiment was conducted in all at room temperature. The specimen of tube assembly was supported by plate springs which simulated the spacer grids and fuel rods of a fuel assembly. To investigate the influence of contact condition between the grids and rods, normal load of 10 and 5 N, gaps of 0.1 and 0.3 mm were applied. The range of the oscillation at the center of the fuel rod specimen was varied as 0.2, 0.3 and 0.4 mm to simulate the fuel rod vibration due to flow. Displacements near the contact were measured with four displacement sensors during the tube oscillation. As results, the shape of oscillation (phase) varied depending on the contact condition. The oscillation displacement increased considerably from the contact to gap condition. The displacement increased further as the gap size increased. It is regarded that the spring shape influences the tube oscillation behaviour. Simple calculation showed that the slip displacement was very small. Therefore, cumulative damage concept is necessary for the fuel rod wear. The mechanism of plowing is thought required to explain the severe wear in the case of gap existence.

  • PDF

비정규 격자를 이용한 극소 로봇의 추진 해석 (Simulation for the Propulsion of Micro-Hydro-Machine with Unstructured Grid)

  • 김문찬;하동대
    • 대한조선학회논문집
    • /
    • 제39권3호
    • /
    • pp.1-7
    • /
    • 2002
  • 검증된 프로그램을 통하여 수축 팽창 운동에 대한 해석을 수행하였으며, 해석 결과 레이놀즈수가 작아지게($R_n{\fallingdotseq}1$) 되면 점성력을 이용한 추진이 효과적일 것으로 나타났고, 계산 결과를 꼭지점법과 비교하였다. 본 연구를 통하여 극도로 점성이 큰 지역에서 통상의 추진기로 추진이 불가능한 곳에서도 추진할 수 있는 새로운 추진 시스템을 제안하였으며, 이 시스템은 micro-hydro-machine의 추진 장치로 활용될 수 있으리라 기대된다.