• Title/Summary/Keyword: Oscillating Circular Cylinder

Search Result 55, Processing Time 0.016 seconds

Lock-on Characteristics of Wake Behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 공진특성에 관한 연구)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.895-902
    • /
    • 2005
  • Lock-on characteristics of flow around a circular cylinder oscillating rotationally with a relatively high forcing frequency have been investigated experimentally. Dominant governing parameters are Reynolds number (Re), angular amplitude of oscillation (${\theta}_A$), and frequency ratio $F_R=f_f/f_n,\;where\;f_f$ is a forcing frequency and $f_n$ is a natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\pi}/90{\leq}{\theta_A}{\leq}{\pi}/3,\;and\;F_R=1.0$. The effect of this active flow control technique on the lock-on flow characteristics of the cylinder wake was evaluated with wake velocity measurements and spectral analysis of hot-wire signals. The rotational oscillation modifies the flow structure of near wake significantly. The lock-on phenomenon always occurs at $F_R=1.0$, regardless of the angular amplitude ${\theta}_A$. In addition, when the angular amplitude is less than a certain value, the lock-on characteristics appear only at $F_R=1.0$,. The range of lock-on phenomena expands and vortex formation length is decreased, as the angular amplitude increases. The rotational oscillation create a small-scale vortex structure in the region just near the cylinder surface. At ${\theta}_A=60^{\circ}$, the drag coefficient was reduced about $43.7\%$ at maximum.

The Effect of Karman Vortex for Mixing in a Micro-channel with an Oscillating Micro-stirrer (진동 교반기가 있는 미소채널에서 혼합에 대한 Karman 와의 영향)

  • An, Sang-Joon;Maeng, Joo-Sung;Kim, Yong-Dae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.144-152
    • /
    • 2006
  • In order to consider the effect of Karman vortex for mixing, mixing indices are calculated for 4 models of micro channel flows driven from the combinations of a circular cylinder and a oscillating stirrer. And their results are compared to that of a simple straight micro channel flow(model I). The mixing rate is improved 5.5 times by Karman vortex (model II) and 11.0 times by the stirrer(model III) respectively. In case of successive mixing by the cylinder and the stirrer(model IV), $27\%$ of shortening the channel length for the complete mixing as well as 1.37 times improvement of mixing efficiency then model III. And then, variation of mixing indices are much stable comparing with the others. Thus, it is found that the Karman vortex plays a good role as a pre-mixing method. The D2Q9 Lattice Boltzmann methods are used.

Natural Frequency of 2-dimensional Heaving Circular Cylinder (상하동요하는 2차원 원주의 고유진동수)

  • Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.389-395
    • /
    • 2008
  • It is very well known that the natural frequency of an oscillating body on the free surface is determinable only after the added mass is given. However, it is hard to find analytical investigations in which actually the natural frequency is obtained. Difficulties arise from the fact that in order to determine the natural frequency we need to compute the added mass at least for a range of frequencies, and to solve an equation where the frequency is a variable. In this study, first, a formula is obtained for the added mass, and then an equation for finding the natural frequency is defined and solved by Newton's iteration. It is confirmed that the formula shows a good agreement with the results given by Ursell(1949), and the value of natural frequency is reduced by 21.5% compared to the pre-natural frequency, which is obtained without considering the effect of added mass.

Characteristics of Flow Over a Rotationally Oscillating Cylinder (주기적으로 회전하는 원형실린더 주위의 유동특성)

  • Choe, Hae-Cheon;Choe, Seong-Ho;Gang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.515-523
    • /
    • 2002
  • Effects of rotary oscillation on unsteady laminar flow past a circular cylinder have been investigated in this study. Numerical simulations are performed for the flow at Re=100 in the range of 0.2<$\Omega$<2.5 and 0.02<$St_f$<0.8, where $\Omega$ and $St_f$ are, respectively, the maximum rotation velocity and rotation frequency normalized by the free-stream velocity and cylinder diameter. Results show that rotary oscillation has significant effects on the flow. When the rotation frequency is near the natural vortex-shedding frequency, lock-on occurs and the lock-on frequency range becomes wider as the rotation velocity increases. In a certain range of the rotation frequency and velocity, modulations in the velocity, lift and drag signals occur and this modulation frequency is expressed as a linear combination of the rotation frequency and vortex-shedding frequency. The mean drag and amplitude of the lift fluctuations show local minima near the boundary between the lock-on non and lock-on regions.

Lock-on Characteristics of wake behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 공진특성)

  • Lee Jung Yeop;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.18-21
    • /
    • 2004
  • Lock-on characteristics of the flow around a circular cylinder performing a rotationally oscillation with a relatively high forcing frequency have been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), amplitude of oscillation $(\theta_A)$, and frequency ratio $F_R=f_f\;/\;f_n$, where $f_f$ is the forcing frequency and if is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14\times10^3,\;\pi/15\leq\theta_A\leq\pi/3$, and $F_R=1.0$. The effects of this active control technique on the lock-on flow regime of the cylinder wake were evaluated through wake velocity measurements and spectral analysis of hot-wire signals. The rotary oscillation modified the flow structure of near wake significantly. The lock-on phenomenon was found to occur in the range of frequency encompassing the natural vortex shedding frequency. In addition, when the amplitude of oscillation is less than a certain value, the lock-on phenomenon was occurred only at $F_R=1.0$. The lock-on range expanded and vortex formation length decreased as the amplitude of oscillation increases. The rotary oscillation generated small-scale vortex structure just near the cylinder surface.

  • PDF

Heat Transfer Response of an Isothermal Cylinder to Fluctuating Cross Flow (맥동류에 놓인 등온 원통의 열전달 응답)

  • 권영필;이병호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.706-712
    • /
    • 1986
  • The unsteay heat transfer from an isothermal circular cylinder in fluctuating cross flow is simulated numerically, for the case where the amplitude of the oscillating velocity is small compared with the mean velocity. By solving the linear perturbation equations derived from the unsteady full Navier-Stokes and the energy equations, the amplitude and the phase of heat transfer response are obtained in the range of Reynolds number R$_{3}$ < 40. The effects of the velocity, the cylinder radius and the frequency on the response are expressed graphically in terms of the normalized velocity and the cylinder radius.

Natural Frequency of 2-Dimensional Heaving Circular Cylinder: Time-Domain Analysis (상하동요하는 2차원 원주의 고유진동수: 시간 영역 해석)

  • Kim, Ki-Bum;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.224-231
    • /
    • 2013
  • The concept of the natural frequency is useful for understanding the characters of oscillating systems. However, when a circular cylinder floating horizontally on the water surface is heaving, due to the hydrodynamic forces, the system is not governed by the equation like that of the harmonic one. In this paper, in order to shed some lights on the more correct use of the concept of the natural frequency, a problem of the heaving circular cylinder is analyzed in the time domain. The equation of motion, an integro-differential equation, was derived following the fashion of Cummins (1962), and its coefficients including the retardation function were obtained using the numerical solution of Lee (2012). The equation was solved numerically, and the experiment was also carried out in the CNU flume. Using our numerical and experimental results, the natural frequency was defined as its average value given by the motion data excluding those of the initial stage. Our results were then compared with those of the existing investigations such as Maskell and Ursell (1970), Ito (1977) and Yeung (1982) as well as the newly obtained results of Lee (2012). Comparison showed that the natural frequency obtained here agrees well with that of Lee (2012), which was found through the frequency domain analysis. It was also shown that the approximation of heaving motion by a damped harmonic oscillation, which was regarded as suitable by most previous investigators, is not physically suitable for the reason that can be clearly shown through comparing the shape of MCFRs(Modulus of Complex Frequency Response). Furthermore, we found that although the previous approximations yield the damping ratio significantly different from our result the magnitude of natural frequency is not much different from our result.

2-dimensional Hydrodynamic Forces of Heaving, Swaying and Rolling Cylinders on a Free Surface of a Water of Finite Depth

  • Rhee, K.P.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.14 no.3
    • /
    • pp.13-22
    • /
    • 1977
  • The hydrodynamic forces acting on a forced oscillating 2-dimensional cylinder on a free surface of a fluid of a finite depth are calculated by distributing singularities on the immersed body surface. And the Haskind-Newman relation in a fluid of a finite depth is derived. The wave exciting force of the cylinder to an oscillation is also calculated by using the above relation. The method is applied to a circular cylinder swaying in a water of finite depth, and then, to a rectangular cylinder heaving, swaying, and rolling. The results of above cases give a good agreement with those by earlier investigators such as Bai, Keil, and Yeung. Also, this method is applied to a Lewis form cylinder with a half beam-to-draft ratio of 1.0 and a sectional area coefficient of 0.941, and to a bulbous section cylinder which is hard to represent by a mapping function. The results reveal that the hydrodynamic forces in heave increase as the depth of a water decrease, but in sway or roll, the tendency of the hydrodynamic forces is difficult to say in a few words. The exciting force to heave for a bulbous section cylinder becomes zero at two frequencies. The added mass moment of inertia for roll is seemed to mainly depend on the sectional shape than the water depth.

  • PDF

A STABILZED FINITE ELEMENT COMPUTATION OF FLOW AROUND OSCILLATING 2D BODIES (안정화된 유한요소법을 이용한 진동하는 2차원 물체 주의 유동해석)

  • Ahn, Hyung-Taek;Rasool, Raheel
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.289-294
    • /
    • 2010
  • Numerical stud of an oscillating body in incompressible fluid is performed. Stabilized finite element method comprising of Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) formulations of linear triangular elements was employed to solve 2D incompressible Navier-Stokes equations whereas the motion of the body was considered by incorporating the arbitrary Langrangian-Eulerian(ALE) formulation. An algebraic moving mesh strategy is utilized for obtaining body conforming mesh deformation at each time step. Two tests cases, namely motion of a circular cylinder and of an airfoil in incompressible flow were analyzed. The model is first validated against the stationary cases and then the capability to handle moving boundaries is demonstrated.

  • PDF

On the Hydrodynamic Forces of Oscillating Cylinders in the Presence of a Free Surface

  • Hwang, J.H.;Rhee, K.P.;Hong, S.W.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.4
    • /
    • pp.13-20
    • /
    • 1980
  • The integral equation method to solve the boundary-value problem of a 2-dimensional body oscillating in the presence of a free surface generally breaks down at and near irregular frequencies due to the hypothetical flow inside the body. In this paper singularity distributions were extended to an inner free surface to remove the irregular frequency as Ohmatsu's work in 1978, and the solution for the above problem was found by using stream function. For various bodies including Lewis form cylinders, the hydrodynamic forces were calculated numerically at various wave numbers. From the results we concluded that the irregular frequencies can be removed even for the Lewis form cylinder as Ohmatsu done for circular cylinders, and calculated hydrodynamic forces by the present method are little higher than those of Ohmatsu's when the singularities are put on the inner free surface of the body. We specially point out that the solution for heaving motion converges in an oscillatory manner but not for swaying and rolling motions.

  • PDF