• Title/Summary/Keyword: OsACO

Search Result 2, Processing Time 0.017 seconds

Regulation of Ethylene Biosynthesis by Phytohormones in Etiolated Rice (Oryza sativa L.) Seedlings

  • Lee, Han Yong;Yoon, Gyeong Mee
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.311-319
    • /
    • 2018
  • The gaseous hormone ethylene influences many aspects of plant growth, development, and responses to a variety of stresses. The biosynthesis of ethylene is tightly regulated by various internal and external stimuli, and the primary target of the regulation is the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis. We have previously demonstrated that the regulation of ethylene biosynthesis is a common feature of most of the phytohormones in etiolated Arabidopsis seedlings via the modulation of the protein stability of ACS. Here, we show that various phytohormones also regulate ethylene biosynthesis from etiolated rice seedlings in a similar manner to those in Arabidopsis. Cytokinin, brassinosteroids, and gibberellic acid increase ethylene biosynthesis without changing the transcript levels of neither OsACS nor ACC oxidases (OsACO), a family of enzymes catalyzing the final step of the ethylene biosynthetic pathway. Likewise, salicylic acid and abscisic acid do not alter the gene expression of OsACS, but both hormones downregulate the transcript levels of a subset of ACO genes, resulting in a decrease in ethylene biosynthesis. In addition, we show that the treatment of the phytohormones results in distinct etiolated seedling phenotypes, some of which resemble ethylene-responsive phenotypes, while others display ethylene-independent morphologies, indicating a complicated hormone crosstalk in rice. Together, our study brings a new insight into crosstalk between ethylene biosynthesis and other phytohormones, and provides evidence that rice ethylene biosynthesis could be regulated by the post-transcriptional regulation of ACS proteins.

Positional Change of the Uterus during Definitive Radiotherapy for Cervix Cancer (자궁경부암의 방사선치료 시 자궁의 크기와 위치 변화)

  • Park, Won;Huh, Seung-Jae;Lee, Jeung-Eun
    • Radiation Oncology Journal
    • /
    • v.21 no.2
    • /
    • pp.135-142
    • /
    • 2003
  • Purpose: The purpose of this study was to investigate the positional change of the uterus during radiotherapy. Materials and Methods: Between 1997 and 2001, 47 patients received definitive radiotherapy for cervical cancer at the Samsung Medical Center. For each patient, two MRI scans were taken; one before and the other 3$\~$4 weeks after the radiotherapy treatment. In T2 weighted MRI images, the positional change of the uterine was quantified by measuring six quantities; the distance from the cervix os to the isthmus of the uterus (Dcx), the maximum length from the isthmus of the uterus to the uterine fundus (Dco), the maximum vertical distance of the uterine body (Dco-per), the angle between the vertical line and the cervical canal in the sagittal images (Acx), the angle of the uterine corpus from the vertical line in the sagittal plan (Aco-ap), and the relative angle of the uterine corpus from a fixed anatomical landmark in the axial images (Aco-axi). Results: The mean Dcx values, before and during the treatment, were 36.7 and 27.8 mm, respectively. The Dco deviated by more than 10 mm in 14 cases (29.8$\%$). The change in the Acx ranged from 0.1 to 67.8$^{\circ}$ (mean 13.2$^{\circ}$). The Aco-ap changed by a maximum of 84.8$^{\circ}$ (mean 16.9$^{\circ}$). The differences in the Dcx plus the Dco in the smaller (<4 cm) and larger ($geq$4 cm) tumors were 5.3 and 19.4 mm, respectively. With patients less than 60 years old, or with a tumor size larger than 4 cm, the difference in the Acx was statistically significant. Conclusion: The positional changes of the uterus, during radiation treatment, should be considered in the 3DCRT or IMRT treatment planning, particularly in patients under 60 years of age or in those with a tumor size greater than 4 cm in maximum diameter.