Positional Change of the Uterus during Definitive Radiotherapy for Cervix Cancer

자궁경부암의 방사선치료 시 자궁의 크기와 위치 변화

  • Park, Won (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Huh, Seung-Jae (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Jeung-Eun (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 박원 (성균관대학교 의과대학 삼성서울병원 치료방사선과) ;
  • 허승재 (성균관대학교 의과대학 삼성서울병원 치료방사선과) ;
  • 이정은 (성균관대학교 의과대학 삼성서울병원 치료방사선과)
  • Published : 2003.06.01

Abstract

Purpose: The purpose of this study was to investigate the positional change of the uterus during radiotherapy. Materials and Methods: Between 1997 and 2001, 47 patients received definitive radiotherapy for cervical cancer at the Samsung Medical Center. For each patient, two MRI scans were taken; one before and the other 3$\~$4 weeks after the radiotherapy treatment. In T2 weighted MRI images, the positional change of the uterine was quantified by measuring six quantities; the distance from the cervix os to the isthmus of the uterus (Dcx), the maximum length from the isthmus of the uterus to the uterine fundus (Dco), the maximum vertical distance of the uterine body (Dco-per), the angle between the vertical line and the cervical canal in the sagittal images (Acx), the angle of the uterine corpus from the vertical line in the sagittal plan (Aco-ap), and the relative angle of the uterine corpus from a fixed anatomical landmark in the axial images (Aco-axi). Results: The mean Dcx values, before and during the treatment, were 36.7 and 27.8 mm, respectively. The Dco deviated by more than 10 mm in 14 cases (29.8$\%$). The change in the Acx ranged from 0.1 to 67.8$^{\circ}$ (mean 13.2$^{\circ}$). The Aco-ap changed by a maximum of 84.8$^{\circ}$ (mean 16.9$^{\circ}$). The differences in the Dcx plus the Dco in the smaller (<4 cm) and larger ($geq$4 cm) tumors were 5.3 and 19.4 mm, respectively. With patients less than 60 years old, or with a tumor size larger than 4 cm, the difference in the Acx was statistically significant. Conclusion: The positional changes of the uterus, during radiation treatment, should be considered in the 3DCRT or IMRT treatment planning, particularly in patients under 60 years of age or in those with a tumor size greater than 4 cm in maximum diameter.

목적: 자궁경부암으로 진단 받고 근치적 방사선치료를 받은 환자에서 방사선 치료 전과 치료 중 자기공명영상을 비교함으로써 삼차원입체조형치료나 강도변조방사선치료의 효과에 영향을 미칠 수 있는 자궁의 크기 및 위치 변화를 알아보았다. 대상 및 방법: 1997부터 2000년까지 삼성서울병원에서 자궁경부암으로 근치적 방사선치료를 시행 받은 환자 중 방사선치료 전과 치료 중간에 자기공명영상 촬영을 시행한 47명의 환자를 대상하였다. 방사선치료는 전골반조사와 강내조사가 시행되었는데 전골반조사는 골반 전체에 통상적 4문 조사법으로 매일 1.8 Gy씩, 주 5회 실시하며 총선량 50.4$\~$55.8 Gy (30.6$\~$45 Gy 이후에 골반중심부차폐) 조사하였고, 강내조사는 A점에 4 Gy씩, 매주 2회 시행하여 총선량 24 Gy까지 시행하였다. 자기공명영상 촬영은 방사선치료 시작 전과 치료 시작 후 3$\~$4주경 강내조사와 골반중심차폐를 하기 전에 실시되었다. 방사선치료 전과 치료 중 촬영된 자기공명영상의 T2 강조 시상면 영상과 축면 영상에서 자궁의 변화를 알기 위하여 자궁경관 크기, 자궁 크기, 자궁체부 크기, 자궁경관 굴곡각, 자궁체부 굴곡각, 과 자궁체부 회전각을 측정하였다. 결과: 자궁경관 크기는 치료 전에 평균 36.7 mm에서 치료 후 27.8 mm로 감소하였고, 자궁체부 크기는 평균 2.5 mm 감소하였으며, 자궁크기 차이는 평균 6.4 mm였다. 자궁경부에서 자궁저부까지의 거리 차이는 평균 15.2 mm였으며, 이 중 6예에선 30 mm 이상 크기가 줄었는데 이 경우에 종양의 크기가 모두 4 cm 이상이었다. 자궁경관 굴곡각은 평균 13.2$^{\circ}$, 자궁체부 굴곡각은 평균 16.9$^{\circ}$ 자궁체부 회전각은 평균 13.1$^{\circ}$ 차이가 있었다. 회전이나 굴곡 중 어느 하나라도 30$^{\circ}$이상 변화된 경우가 전체 환자 중 9예(19.1$\%$)가 있었다. 연령과 자궁경관 굴곡각의 차이는 통계적으로 유구한 연관이 있었고, 종양 크기에 따라 자궁경관 크기, 자궁 크기, 자궁체부 크기와 자궁경관 굴곡각은 모두 유의한 변화가 있었다. 그리고, 종양 크기가 4 cm 이상인 경우에 자궁경관의 크기, 자궁 크기와 자궁체부의 크기 변화가 모두 통계적으로 의미있는 차이를 보였다. 또한, 자궁경부로부터 자궁저부까지 거리 차이는 종양 크기가 4 cm 미만인 경우는 5.3 mm였으나 4 cm 이상일 때는 19.4 mm로 현저한 변화를 보였다. 자궁경관 굴곡각은 60세 미만인 경우 60세 이상보다 8$^{\circ}$ 정도 더 변화가 있었고, 종양 크기가 4 cm 이상일 때 미만일 때보다 2배 이상 굴곡 변화가 있었다. 결론: 자궁경부암 환자에서 근치적 방사선치료 시 치료에 따른 자궁 크기 및 위치 변화가 다양하고 개별적으로 예측하기 쉽지 않으므로, 특히, 60세 미만이거나 종양 크기가 4 cm 이상인 경우, 삼차원입체조형치료나 강도변조 방사선치료를 이용한 근치적 방사선치료 시 치료 중 개별환자의 계획용표적체적의 변화를 반드시 고려해야 한다고 생각한다.

Keywords

References

  1. MundtAJ,LujanAE,RotmenschJ,et al.Intensitymodulated whole pelvic radiotherapy in women with gynecologic malignancies. IntJ Radiat Oncol Biol Phys 2002; 52:1330-1337 https://doi.org/10.1016/S0360-3016(01)02785-7
  2. RoeskeJC,LujanA,Rotmensch J, et al.Intensitymodulated whole pelvic radiation therapy in patients with gynecologic malignacies. Int J Radiat Oncol Biol Phys 2000; 48:1613-1621 https://doi.org/10.1016/S0360-3016(00)00771-9
  3. PortelanceL,ChaoKS,GrigsbyPW,etal.Intensitymodulated radiation therapy (IMRT) reducessmall bowel, rectum, and bladderdoses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys 2001;51:261-266
  4. AntolakJA,RosenII,Childress CH, et al. Prostate target volume variations during a course of radiotherapy. Int J Radiat Oncol Biol Phys 1998;42:661-672 https://doi.org/10.1016/S0360-3016(98)00248-X
  5. Rudat V, Schraube P, Oetzel D, et al. Combined error ofpatientpositioning variability andprostate motion uncertainty in 3D conformal radiotherapy of localized prostate cancer. Int J Radiat Oncol Biol Phys 1996;35:1027-1034 https://doi.org/10.1016/0360-3016(96)00204-0
  6. Crook JM, Raymond Y, Salhani D, et al. Prostate motion duringstandardradiotherapyas assessed by fiducial markers. Radiother Oncol 1995;37:35-42 https://doi.org/10.1016/0167-8140(95)01613-L
  7. Roeske JC,FormanJD, Mesina CF, et al. Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. Int J Radiat Oncol Biol Phys 1995; 33:1321-1329 https://doi.org/10.1016/0360-3016(95)00225-1
  8. International Commission on Radiation Units and Measurements (ICRU). Report Number 50: Prescribing, recording and reportingphotonbeam therapy. Washington, DC: ICRU;1993
  9. Perez CA, Brady LW. Uterine cervix. In: Povilat C, Becker A, eds. Principles and Practice of Radiation Oncology, 3rd ed. Philadelphia, PA: Lippincott Co, 1998:1733-1834
  10. Montana GS, FlowerWC. Carcinoma of the cervix: analysis of bladder and rectal radiation dose and complications. Int J Radiat Oncol Biol Phys 1989;16:95-100 https://doi.org/10.1016/0360-3016(89)90015-1
  11. Perez CA,Fox S, Lockett MA, et al.Impact ofdose in outcome of irradiation alone in carcinoma of the uterine cervix: analysis of two differenet methods. Int J Radiat Oncol Biol Phys 1991;21:885-898 https://doi.org/10.1016/0360-3016(91)90726-K
  12. Lanciano RM,MartzK,MontanaGS, et al. Influence ofage,priorabdominal surgery, fractionsize,and dose oncomplications after radiation therapy for squamous cell cancer of the uterine cervix. A patterns of care study. Cancer 1992;69:2124-2130 https://doi.org/10.1002/1097-0142(19920415)69:8<2124::AID-CNCR2820690819>3.0.CO;2-D
  13. Huh SJ,KimBK,LimDH,etal. Treatment results of radical radiotherapy in uterine cervix cancer. J Korean Soc Ther Radiol 2002;20:237-245
  14. Leibel SA, Phillips TL. Carcinoma of the uterine cervix. In: Leibel SA, Phillips TL, eds. Textbook of radiation oncology, 1st ed.Philadelphia, PA: W.B. Saunders Co, 1998:799- 841
  15. Hoffman JP, Lanciano R, Carp NZ, etal. Morbidity after intraperitoneal insertion of saline-filled tissue expanders for small bowel exclusion from radiotherapy treatment fields: a prospective four year experience with 34 patients. Ann Surg 1994;60:473-482
  16. Rodier JF, Janser JC, Rodier D,etal. Prevention of radiation enteritis by an absorbable polyglycolic acid mesh sling. A 60-case multicentric study. Cancer 1991;68:2545- 2549 https://doi.org/10.1002/1097-0142(19911215)68:12<2545::AID-CNCR2820681202>3.0.CO;2-F
  17. Das IJ, Lanciano RM, Movsas B, et al. Efficacy of a belly board device with CT-simulation in reducing small bowel volume within pelvic irradiation fields. Int J Radiat Oncol Biol Phys 1997;39:67-76 https://doi.org/10.1016/S0360-3016(97)00310-6
  18. Huh SJ, Lim DH, Ann YC, et al. Effect of customized small bowel displacement system in pelvic irradiation. Int J Radiat Oncol Biol Phys 1998;40:623-627 https://doi.org/10.1016/S0360-3016(97)00764-5
  19. Chao KS, Low DA, Perez CA, et al. Intensity-modulated radiation therapy in head and neck cancers: The Mallinckrodt experience. Int J Cancer 2000;90:92-103 https://doi.org/10.1002/(SICI)1097-0215(20000420)90:2<92::AID-IJC5>3.0.CO;2-9
  20. Chao KS, Low DA, Perez CA, et al. Intensity-modulated radiation therapy in head and neck cancers: The Mallinckrodt experience. Int J Cancer 2000;90:92-103 https://doi.org/10.1002/(SICI)1097-0215(20000420)90:2<92::AID-IJC5>3.0.CO;2-9
  21. Huang E, Teh BS, Strother DR, et al. Intensity-modulated radiation therapy for pediatric medulloblastoma: early report on the reduction of ototoxity. Int J Radiat Oncol Biol Phys 2002;52:599-605 https://doi.org/10.1016/S0360-3016(01)02641-4
  22. Teh BS, Mai WY, Grant WH 3rd, et al. Intensity modulated radiotherapy (IMRT) decreases treatment-related morbidity and potentially enhances tumor control. Cancer Invest 2002;20:437-451 https://doi.org/10.1081/CNV-120002143
  23. Gerstner N, Wachter S, Knocke TH, etal. Thebenefit ofbeam'seye view based 3D treatment planning for cervical cancer. Radiother Oncol 1999;51:71-78 https://doi.org/10.1016/S0167-8140(99)00038-9
  24. Buchali A, KoswigS,DingesS,et al. Impact of the filling status of the bladder and rectum on their integraldose distribution and themovement of the uterus in the treatment planningofgynaecological cancer. Radiother Oncol 1999; 52:29-34 https://doi.org/10.1016/S0167-8140(99)00068-7
  25. International Commission on Radiation Units and Measurements (ICRU). Report Number 62: Prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50). Washington, DC: ICRU;1999
  26. Kim RY, McGinnis S, Spencer SA, et al. Conventional four-field pelvic radiotherapy technique without computed tomography-treatment planning in cancer of the cervix: potential geographic miss and its impact on pelvic control. Int J Radiat Oncol Bioi Phys 1995;31:109-112 https://doi.org/10.1016/0360-3016(94)00337-K