• Title/Summary/Keyword: Oryza grandiglumis

Search Result 13, Processing Time 0.051 seconds

An Acidic PATHOGENESIS-RELATED1 Gene of Oryza grandiglumis is Involved in Disease Resistance Response Against Bacterial Infection

  • Shin, Sang Hyun;Pak, Jung-Hun;Kim, Mi Jin;Kim, Hye Jeong;Oh, Ju Sung;Choi, Hong Kyu;Jung, Ho Won;Chung, Young Soo
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.208-214
    • /
    • 2014
  • Wild rice, Oryza grandiglumis shows hyper-resistance response to pathogen infection. In order to identify genes necessary for defense response in plants, we have carried out a subtractive hybridization coupled with a cDNA macroarray. An acidic PATHOGENESIS-RELATED1 (PR1) gene of the wild rice is highly identical to the acidic PR1 genes of different plant species. The OgPR1a cDNA has an apparent single open reading frame with a predicted molecular mass 40,621 Da and an isoelectic point of 5.14. Both in silico analysis and a transient expression assay in onion epidermal cells revealed that the OgPR1a protein could be localized in intercellular space in plants. The OgPR1a mRNA was strongly transcribed by the exogenous treatment with ethylene and jasmonic acid as well as protein phosphatase inhibitors. Additionally, ectopic expression of the OgPR1a conferred disease resistance on Arabidopsis to the bacterial and fungal infections.

Genes of Wild Rice (Oryza grandiglumis) Induced by Wounding and Yeast Extract (상처와 효모추출물 처리조건에서 유발되는 야생벼 유전자 스크린)

  • Shin, Sang-Hyun;Im, Hyun-Hee;Lee, Jai-Heon;Kim, Doh-Hoon;Chung, Won-Bok;Kang, Kyung-Ho;Cho, Sung-Ki;Shin, Jeong-Sheop;Chung, Young-Soo
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.650-656
    • /
    • 2004
  • Oryza grandiglumis (CCDD, 2n=48), one of the wild rice species, has been known to possess fungal-,bacterial-, and insect-resistance against sheath blight, rice blast, bacterial leaf blight and brown plant hopper (Nilaparvata lugens). To rapidly isolate differentially expressed genes responding to fungal and wounding stress, wounding and yeast extract were treated to O. grandiglumis for 24 hrs. Suppression subtractive hybridization (SSH) method was used to obtain differentially expressed genes from yeast extract and wounding treated plants. Seven hundreds and seventy six clones were obtained by subcloning PCR product, and colony array and screening were carried out using radio-isotope labeled cDNA probes prepared from the wounding and yeast extract treated plants. One hundred and fifteen colonies were confirmed as true positive ones. Average insert size of the clones were ranged from 400 bp to 700 bp and all the inserts were sequenced. To decide the identity of those clones, sequences were analyzed by sequence homology via GenBank database. The homology search result showed that 68 clones were matched to the genes with known function; 16 were related to primary metabolism, 5 to plant retrotransposons, 5 to defense related metallothionein-like genes. In addition to that, others were matched to various genes with known function in amino acid synthesis and processing, membrane transport, and signal transduction, so on. In northern blot analysis, induced expressions of ogwfi-161, ogwfi-646, ogwfi-663, and ogwfi-695 by wounding and yeast extract treatments were confirmed. The result indicates that SSH method is very efficient for rapid screening of differentially expressed genes.

Ectopic Expression of Wild Rice OgGRP Gene Encoding a Glycine Rich Cell Wall Protein Confers Resistance to Botrytis cinerea Pathogen on Arabidopsis

  • Jeon, Eun-Hee;Chung, Eun-Sook;Lee, Hye-Young;Pak, Jung-Hun;Kim, Hye-Jeong;Lee, Jai-Heon;Moon, Byung-Ju;Jeung, Ji-Ung;Shin, Sang-Hyun;Chung, Young-Soo
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.193-198
    • /
    • 2009
  • A full-length cDNA of OgGRP gene encoding a glycinerich cell wall protein was isolated from wild rice (Oryza grandiglumis). Deduced amino acid sequences of OgGRP are composed of 148 amino acids (16.3 kDa), and show 85.9% homology with Osgrp-2 (Oryza sativa). RT-PCR analysis showed that RNA expression of OgGRP was regulated by defense-related signaling chemicals, such as cantharidin, endothall, jasmonic acid, wounding, or yeast extract treatment. In relation to pathogen stress, the function of OgGRP was analyzed in OgGRP over-expressing Arabidopsis thaliana. Overexpression of OgGRP in Arabidopsis contributed to moderate resistance against fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. In the analysis of the transgenic Arabidopsis lines to check the change of gene expression profile, induction of PR1, PR5 and PDF1.2 was confirmed. The induction seemed to be caused by the interaction of ectopic expression of OgGRP with SA-and JA-dependent signaling pathways.