• Title/Summary/Keyword: Orthotropic plate

Search Result 265, Processing Time 0.027 seconds

A Numerical Analysis on the Diaphragm Structures for Improving Fatigue Performance in Orthotropic Steel Decks (강바닥판의 피로성능 향상을 위한 다이아프램 구조상세)

  • Shin, Jae Choul;An, Zu Og;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.559-573
    • /
    • 2007
  • Orthotropic steel decks are manufactured by welding thin plates therefore it is inevitable that there are abundant works of welding process. On connection of transverse rib web, crossing point of longitudinal rib, transverse rib and deck plate and cut-out parts of transverse rib are the significant position of stress concentration because of out of plane and oil-canning deformation caused by longitudinal rib distortion with shear force and distortion. At the current research, the crossing point where the orthotropic steel decks's effect of improving fatigue performance are high, not placing scallop and diaphragm which have same plane with transverse rib placed inside of longitudinal rib at the same time, the reduce effects of stress concentration at the cut-out section and the crossing are high. Especially the installation of the diaphragm causing great effects based on research results to stress concentration appearance reduce effects at the cut-out section, putting radius of curvature of the diaphragm's top and bottom as a target, as a result of carrying out the parametric analysis an optimal diaphragm form that has great effects in fatigue performance came to a conclusion. Also based on optimal diaphragm form, an advantage of the diaphragm optimal setting position for improvement of the fatigue performance came to a conclusion.

The Suggestion of Testing Method for Analysis of Tensile Strength of Multi-Directional GFRP Plate (다방향 GFRP 플레이트의 인장강도 분석을 위한 시험 방법 제안에 관한 연구)

  • Sim, Jong-Sung;Kwon, Hyuck-Woo;Lee, Hyoung-Ho;Kim, Hyun-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.799-808
    • /
    • 2011
  • In this study, a standardized test method to analyze tensile properties of multi-directional GFRP plate was proposed. Presently, tensile strength test of FRP composite reinforced with isotropic and orthotropic fiber is standardized according to ISO standard. Also, even though many studies were performed on test method to analyze the dynamic properties, the properties of tensile strength for multi-directional GFRP plate were not clearly identified. Currently, the domestic test method in accordance with ASTM, which is applicable to unidirectional FRP plate, gave tensile test results greater than actual properties. Thus, in this study, GFRP tensile test was conducted using the method found to be commonly applicable to all standards based on literature review of domestic and international references. Then, anchorage length experiments were performed using the proposed tension test method to evaluate validity of the method. Finally, optimal anchorage length was estimated from the numerical analysis to propose the standardized tensile strength method for GFRP multi-directional composite evaluation.

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.

Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate

  • Kolahdouzan, Farzad;Arani, Ali Ghorbanpour;Abdollahian, Mohammad
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.273-287
    • /
    • 2018
  • Buckling and free vibration analysis of sandwich micro plate (SMP) integrated with piezoelectric layers embedded in orthotropic Pasternak are investigated in this paper. The refined Zigzag theory (RZT) is taken into consideration to model the SMP. Four different types of functionally graded (FG) distribution through the thickness of the SMP core layer which is reinforced with single-wall carbon nanotubes (SWCNTs) are considered. The modified couple stress theory (MCST) is employed to capture the effects of small scale effects. The sandwich structure is exposed to a two dimensional magnetic field and also, piezoelectric layers are subjected to external applied voltages. In order to obtain governing equation, energy method as well as Hamilton's principle is applied. Based on an analytical solution the critical buckling loads and natural frequency are obtained. The effects of volume fraction of carbon nanotubes (CNTs), different distributions of CNTs, foundation stiffness parameters, magnetic and electric fields, small scale parameter and the thickness of piezoelectric layers on the both critical buckling loads and natural frequency of the SMP are examined. The obtained results demonstrate that the effects of volume fraction of CNTs play an important role in analyzing buckling and free vibration behavior of the SMP. Furthermore, the effects of magnetic and electric fields are remarkable on the mechanical responses of the system and cannot be neglected.

On the modeling of dynamic behavior of composite plates using a simple nth-HSDT

  • Djedid, I. Klouche;Draiche, Kada;Guenaneche, B.;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.371-387
    • /
    • 2019
  • In the present paper, a simple refined nth-higher-order shear deformation theory is applied for the free vibration analysis of laminated composite plates. The proposed displacement field is based on a novel kinematic in which include the undetermined integral terms and contains only four unknowns, as against five or more in case of other higher-order theories. The present theory accounts for adequate distribution of the transverse shear strains through the plate thickness and satisfies the shear stress-free boundary conditions on the top and bottom surfaces of the plate, therefore, it does not require problem dependent shear correction factor. The governing equations of motion are derived from Hamilton's principle and solved via Navier-type to obtain closed form solutions. The numerical results of non-dimensional natural frequencies obtained by using the present theory are presented and compared with those of other theories available in the literature to verify the validity of present solutions. It can be concluded that the present refined theory is accurate and efficient in predicting the natural frequencies of isotropic, orthotropic and laminated composite plates.

Study on numerical analysis for capability improvement of long span bridge with orthotropic steel deck (장지간 교량의 강바닥판 성능 강화를 위한 수치해석 연구)

  • Kong, Byung-Sueng;Kim, Jae-Gon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.669-672
    • /
    • 2011
  • 본 논문은 사하중 절감이 중요한 장지간 교량에 있어서 유리한 구조를 가지는 강바닥판의 성능 강화를 위한 수치해석 연구를 실시하였다. 이미 국내외에서는 다수의 강바닥판을 이용한 교량의 시공 사례가 많으며, 앞으로도 시공 또는 계획될 해상 장지간 교량에서도 강바닥판 교량의 사례가 많을 것으로 판단된다. 강바닥판 교량은 공기를 단축할 수 있으며, 들보의 높이가 작아서 날씬한 형상으로 할 수 있기 때문에 미관을 향상 시킬 수 있을 뿐만 아니라 가설 공사비를 절감시킬 수 있는 등 많은 장점을 갖고 있다. 하지만 강바닥판은 이상과 같이 장점을 갖는 구조이지만 비교적 얇은 강판을 복잡한 형상으로 용접하여 조립함에 용접 결함, 잔류응력, 면내 및 면외 변형의 발생 등의 문제점이 지적되고 있다. 따라서 외국에서는 강바닥판의 피로 손상에 대한 실험 및 연구로 많은 자료를 확보하고 있으며, 국내에서도 국내 현실에 맞는 강바닥판의 피로거동 및 피로강도 향상방안에 관한 연구가 더욱더 필요하다. 본 연구에서는 국내교량에 적용되고 있는 구조상세 및 구조해석을 실시하여 강바닥판의 피로거동과 응력 특성을 파악하고, 피로강도를 향상하는 방법으로 Bulkhead Plate와 수직리브 형상 및 부착에 따른 거동을 분석하고, 최적상세를 도출하여 강바닥판의 적극적인 활용화에 그 목적이 있다.

  • PDF

Local Deformation Analysis of the Orthotropic Steel Bridge Deck Due to Wheel Loadings Using FSM and FEM (윤하중에 의한 강바닥판 교면포장의 종방향균열 관련 수치해석법 개발)

  • Jeong, Jin Seok;Jung, Myung Rag;Ock, Chang Kwon;Lee, Won Tae;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.243-251
    • /
    • 2016
  • Longitudinally structural cracks are sometimes observed in the pavement on steel plate deck bridges because traffic truck loadings can cause large local deformations of the thin deck plate stiffened by longitudinal and transverse beams. In this study, an improved finite strip method using flat-shell strip, prism, and link elements is presented to investigate local deformations of steel decks with pavements in which flexural and torsional stiffness effects of thin floor beams are rigorously taken into account. A simplified deck model extracted from steel plate-girder bridges is analyzed using the developed FSM and the commercial FE program, ABAQUS and also, their numerical results are compared and discussed.

A Study on the Geometric Parameters that Influence the Shear Buckling of Trapezoidally Corrugated Webs (제형파형강판의 전단거동에 영향을 미치는 기하학적 요소에 대한 연구)

  • Gill, Heung Bae;Lee, Seung Rok;Lee, Hak Eun;Lee, Pil Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.591-601
    • /
    • 2003
  • Because of their high out-of-plane and in-planes strength, trapezoidally corrugated plates have been increasingly used in buildings and bridges. If corrugated plates are used as the web of plate girders or prestressed concrete box girders, the flanges take most of the bending stress. On the other hand, the corrugated plate web supports shear stress due to the accordion effect. The corrugated plate web could fail by three different buckling modes: global, local, or interactive shear buckling. To determine the effects of geometric parameters on the buckling capacity of the corrugated plates, a parametric study was performed using finite dement method. The analysis results showed that the buckling capacity and modes depend on individual parameters as well as combinations of parameters.

Combined effects of material properties and boundary conditions on the large deflection bending analysis of circular plates on a nonlinear elastic foundation

  • Altekin, Murat
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.537-549
    • /
    • 2020
  • Geometrically nonlinear axisymmetric bending analysis of shear deformable circular plates on a nonlinear three-parameter elastic foundation was made. Plates ranging from "thin" to "moderately thick" were investigated for three types of material: isotropic, transversely isotropic, and orthotropic. The differential equations were discretized by means of the finite difference method (FDM) and the differential quadrature method (DQM). The Newton-Raphson method was applied to find the solution. A parametric investigation using seven unknowns per node was presented. The novelty of the paper is that detailed numerical simulations were made to highlight the combined effects of the material properties and the boundary conditions on (i) the deflection, (ii) the stress resultants, and (iii) the external load. The formulation was verified through comparison studies. It was observed that the results are highly influenced from the boundary conditions, and from the material properties.

A modified multi-objective elitist-artificial bee colony algorithm for optimization of smart FML panels

  • Ghashochi-Bargha, H.;Sadr, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1209-1224
    • /
    • 2014
  • In Current paper, the voltages of patches optimization are carried out for minimizing the power consumption of piezoelectric patches and maximum vertical displacement of symmetrically FML panels using the modified multi-objective Elitist-Artificial Bee Colony (E-ABC) algorithm. The voltages of patches, panel length/width ratios, ply angles, thickness of metal sheets and edge conditions are chosen as design variables. The classical laminated plate theory (CLPT) is considered to model the transient response of the panel, and numerical results are obtained by the finite element method. The performance of the E-ABC is also compared with the PSO algorithm and shows the good efficiency of the E-ABC algorithm. To check the validity, the transient responses of isotropic and orthotropic panels are compared with those available in the literature and show a good agreement.