• Title/Summary/Keyword: Orthotropic plate

Search Result 265, Processing Time 0.025 seconds

Buckling of Bimodulus Composite Thin Plate (이중탄성계수 복합재료판의 좌굴)

  • 이영신;김종천
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1520-1534
    • /
    • 1994
  • A new analytical method for the prediction of the buckling behavior of laminated plates consisting of layers having different properties in tension and compression, so called bimodulus, is proposed in this paper. Buckling analysis of bimodular composite laminated paltes are performed with the results reduced from plate bending analysis. The governing equations of bimodular plates are based on the first shear deformation theory. As a case study, bending and buckling of simply supported, multilayered, symmetric, antisymmtric, and specially orthotropic laminates under uniformly distributed lateral load for bending analysis and in-plane load for buckling are considered. The results of the bending analysis are compared with the previous papers. Then, the fundamental critical buckling loads and buckling modes are calculated for the various bimodular composite rectangular thin plates.

A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates

  • Rezaiee-Pajand, M.;Shahabian, F.;Tavakoli, F.H.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.253-271
    • /
    • 2012
  • To analyze the bending and transverse shear effects of laminated composite plates, a thirteen nodes triangular element will be presented. The suggested formulations consider a parabolic variation of the transverse shear strains through the thickness. As a result, there is no need to use shear correction coefficients in computing the shear stresses. The proposed element can model both thin and thick plates without any problems, such as shear locking and spurious modes. Moreover, the effectiveness of $w_{,n}$, as an independent degree of freedom, is concluded by the present study. To perform the accuracy tests, several examples will be solved. Numerical results for the orthotropic materials with different boundary conditions, shapes, number of layers, thickness ratios and fiber orientations will be presented. The suggested element calculates the deflections and stresses more accurate than those available in the literature.

Concerning the tensor-based flexural formulation: Theory

  • Al-Rousan, Rajai Z.;Alhassan, Mohammed A.;Hejazi, Moheldeen A.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.445-455
    • /
    • 2019
  • Since the days of yore, plate's flexural analysis and formulation were dependent on the assumed coordinate system. In uncovering the coordinates-independent flexural interpretation, in this study, the plate bending analysis has been interpreted in terms of the tensor's components of curvatures and bending moments, in accordance with the continuum mechanics. The paper herein presents the theoretical formulations and conceptual perspectives of the Hydrostatic Method of Analysis (HM) that combines the continuum mechanics with the elasticity theory; the graphical statics and analysis; the theory of thin isotropic and orthotropic plates.

Concerning the tensor-based flexural formulation: Applications

  • Alhassan, Mohammed A.;Al-Rousan, Rajai Z.;Hejazi, Moheldeen A.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.765-777
    • /
    • 2021
  • Recently, the plate bending analysis has been interpreted in terms of the tensor's components of curvatures and bending moments by presenting the conceptual perspectives of the Hydrostatic Method of Analysis (HM) and theoretical formulations that combine the continuum mechanics with the graphical statics analysis, the theory of thin orthotropic and isotropic plates, and the elasticity theory. In pursuance of uncovering a genuine formulation of the plate's flexural differential equations, that possess the general-covariance and coordinates-independency. This study had then, tackled various natural and structural problems in both solid and fluid branches of the continuum mechanics in a description of such theoretical and conceptual attainment in uncovering the dimensional independent diffeomorphism covariant partial differential laws.

Damage Characteristics of Quasi Isotropic Composite Laminates Subjected to Low Velocity Impact (준등방성 복합적층판의 저속충격에 의한 손상특성)

  • Kim, J.H.;Jeon, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.135-141
    • /
    • 1997
  • Low velocity impact test and compressive residual strength test after impact were performed by using Hercules AS4/3501-6[45/0/-45/90]$_{2s}$ laminated plate to investigate the low velocity impact damage behavior and the post-impact strength degradation on orthotropic composite laminate plate. Due to the lateral impact losd, the load path showed "" shape according to the laminate central deflection. Damage in a laminate occurs by inclined matrix crack at the damage initiation load stage and vertical matrix crack, occurs on the outer surface. Evaluating the compressive residual strength after the low velocty impact test, it could be found that there is a transient range where the compressive residual strength drop suddenly in the initial damage which is in the matrix crack range and the initial delamination area. is in the matrix crack range and the initial delamination area.

  • PDF

A Study on the Design Criteria Relating to the Local Buckling of Pultruded FRP Structural Compression Members (펄트루젼 구조압축재의 국부좌굴 설계규준 개발에 관한 연구)

  • Joo, Hyung Joong;Lee, Seung Sik;Yoon, Soon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.597-606
    • /
    • 2006
  • Since FRP materials have various advantages over steel, many research activities to use them for the civil engineering applications are now in progress. The present paper deals with the local buckling behavior of FRP pultruded members as a first step toward the development of design criteria. In the design of compression members, it is very important to know not only if local buckling occurs or not but also which plate component governs local buckling, but it is not easy to perform this work in a rigorous manner. In the present paper, a simple and accurate equation which can compute the coefficients of buckling of orthotropic plates and local buckling of pultruded compression members is suggested by performing rigorous analysis, energy analysis, and parametric study. The local buckling strength and the plate component governing the local buckling behavior of thin-walled pultruded compression members can be easily determined by using the proposed equation.

Improvement of the Design and Construction Technique of Orthotropic Steel Deck Bridges : Fatigue Strength of Three Dimensional Full-scaled Model (강바닥판교의 설계 및 시공성 향상방안 : 강바닥판교 3차원 실물 모형체의 피로강도)

  • Oh, Soon Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.23-32
    • /
    • 2006
  • This study was conducted to improve the design and construction technique of orthotropic steel-deck bridges. After conducting an F.E.M. analysis of the various rib types of the connection details, static and fatigue tests were conducted, using a three-dimensional, full-scaled, orthotropic, steel-deck-plate model with internal diaphrams, to check the fatigue strength depending on the types of details. The model structure was made of two types of longitudinal ribs: the domestic standard and the European rabbit types. The fatigue strength of the steel-deck system was found to have improved through the installation of an internal diaphram, as no cracks were found on the bottom round part of the scallop with a diaphram. There were no differences between the domestic and the European types of details in terms of strength may be partially influenced by the shape of the scallop and by the installation of an internal diaphram, but it can be improved more significantly according to the quality of the welding that will be done.

The Effect of Diaphragm inside Trough Rib on Fatigue Behavior of Trough Rib and Cross Beam Connections in Orthotropic Steel Decks (강바닥판 종리브와 횡리브 교차부의 피로거동에 대한 종리브내 다이아프램의 영향)

  • Choi, Dong Ho;Choi, Hang Yong;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.239-250
    • /
    • 2000
  • This study investigates the mechanical behavior on trough rib to crossbeam joint in orthotropic steel plate decks, specially emphasizing on the effect of diaphragm inside trough rib on the fatigue behavior of slit by static and fatigue tests. In particular, the effects of diaphragm on in-plane stress and out-of-plane stress, stress concentration, propagation of fatigue cracks at the silt are studied. With the result of experiment and numerical analysis, we have estimated the fatigue strength using the nominal stress and hot-sport stress. The details with diaphragm have occurred about 50% stress reduction at trough rib part of trough rib to crossbeam joint than the detail without diaphragm, however, the lower parts of crossbeam have occurred much more stress. Initial crack size or slit have an considerable influence on the propagation of fatigue cracks due to V-notch. The fatigue strength category of the details without diaphragm has higher value than fatigue limit, whereas that of the details with diaphragm is estimated lower than fatigue limit.

  • PDF

A Study to Evaluate Performance of Poly-Urethane Polymer Concrete for Long-Span Orthotropic Steel Bridge (장경간 강바닥판 케이블교량에 적용하기 위한 폴리우레탄 폴리머콘크리트의 공용특성 연구)

  • Park, Heeyoung;Lee, Junghun;Kwak, Byeongseok;Choi, Iehyun;Kim, Taewoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES: The purpose of this study is to evaluate physical properties, durability, fatigue resistance, and long-term performance of poly-urethane concrete (PU) which can be possible application of thin layer on long-span orthotropic steel bridge and to check structural stability of bridge structure. METHODS : Various tests of physical properties, such as flexural strength, tensile strength, bond strength and coefficient of thermal expansion tests were conducted for physical property evaluation using two types of poly urethane concrete which have different curing time. Freezing and thawing test, accelerated weathering test and chloride ion penetration test were performed to evaluate the effect of exposed to marine environment. Beam fatigue test and small scale accelerated pavement test were performed to assess the resistance of PU against fatigue damage and long-term performance. Structural analysis were conducted to figure out structural stability of bridge structure and thin bridge deck pavement system. RESULTS: The property tests results showed that similar results were observed overall however the flexural strength of PUa was higher than those of PUb. It was also found that PU materials showed durability at marine environment. Beam fatigue test results showed that the resistances of the PUa against fatigue damage were two times higher than those of the PUb. It was found form small scale accelerated pavement test to evaluate long-term performance that there is no distress observed after 800,000 load applications. Structural analysis to figure out structural stability of bridge structure and thin bridge deck pavement system indicated that bridge structures were needed to increase thickness of steel deck plate or to improve longitudinal rib shape. CONCLUSIONS: It has been known that the use of PU can be positively considered to thin layer on long-span orthotropic steel bridge in terms of properties considered marine environment, resistance of fatigue damage and long-term performance.

General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory

  • Nasihatgozar, M.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.151-176
    • /
    • 2017
  • This paper deals with general equations of motion for free vibration analysis response of thick three-layer doubly curved sandwich panels (DCSP) under simply supported boundary conditions (BCs) using higher order shear deformation theory. In this model, the face sheets are orthotropic laminated composite that follow the first order shear deformation theory (FSDT) based on Rissners-Mindlin (RM) kinematics field. The core is made of orthotropic material and its in-plane transverse displacements are modeled using the third order of the Taylor's series extension. It provides the potentiality for considering both compressible and incompressible cores. To find these equations and boundary conditions, Hamilton's principle is used. Also, the effect of trapezoidal shape factor for cross-section of curved panel element ($1{\pm}z/R$) is considered. The natural frequency parameters of DCSP are obtained using Galerkin Method. Convergence studies are performed with the appropriate formulas in general form for three-layer sandwich plate, cylindrical and spherical shells (both deep and shallow). The influences of core stiffness, ratio of core to face sheets thickness and radii of curvatures are investigated. Finally, for the first time, an optimum range for the core to face sheet stiffness ratio by considering the existence of in-plane stress which significantly affects the natural frequencies of DCSP are presented.