• Title/Summary/Keyword: Orthotropic Material

Search Result 284, Processing Time 0.025 seconds

Analysis of Orthotropic Cylindrical Shells Subjected to Localized Loads (국부하중 을 받는 직교이방성 원통셀 의 해석)

  • 이영신;박정화;옹장우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.408-415
    • /
    • 1984
  • The stress state of orthotropic cylindrical shells subjected to localized loads is considered. The governing equations for orthotropic cylindrical shells are derived on the basis of the Morley-Koiter's isotropic shell theory. It is assumed here that the material has a special orthotropy. Solutions are obtained by the Bijlaard's method in the from of double Fourier series. Numerical examples are presented for cylindrical shells having various orthotropic material properties and shell geometries.

Stress analysis for the orthotropic cylindrical shells subjected to line load based on Novozhilov's shell theory (선하중을 받는 직교이방성 원통셀의 Novozhilov셀 이론에 의한 응력해석)

  • 이영신;최병두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.789-799
    • /
    • 1987
  • The stress state and displacement for the orthotropic cylindrical shell subjected to line load along a generator is presented. It is assumed that the behavior of the material is specially-orthotropic. The governing equation for orthotropic cylindrical shell is derived on the basis of Novozhilov's shell theory. General solution is obtained by extending the Naghdi's method for the isotropic cylindrical shell under the line load. Numerical examples are presented for circular cylindrical shells having various othotropic material properties and geometries.

Buckling of an Orthotropic Layer Bonded to a Half-Space with an Interface Crack (계면균열을 갖는 반무한체에 접합된 직교이방성 층의 좌굴)

  • Jeong, Gyeong-Mun;Beom, Hyeon-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.95-103
    • /
    • 2001
  • The buckling of an orthotropic layer bonded to an orthotropic half-space with an interface crack subjected to compressive load under plane strain is analyzed. General solution to the stability equations describing the buckling behavior of both the layer and the half-space is expressed in terms of displacement functions. The displacement functions are represented by the solution of Cauchy-type singular integral equations, which are numerically solved. Numerical results of the critical buckling loads are presented fur various geometric parameters and material properties of both the layer and half-space.

  • PDF

Study on the Development of Photoelastic Experiment of Orthotropic Material (I) (직교 이방성의 광탄성 실험법 개발에 관한 연구 I)

  • 최선호;황재석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.8-18
    • /
    • 1988
  • In the composite structures or the concrete structures, to analyze stress concentration factor, stress distributions and fracture mechanics of them under forces by photoelastic experiment, it is natural that to develope photoelastic model material for them is surely necessary. Thus, the orthotropic photoelastic model material for the transparent type photoelastic device was developed in the paper, it is called Copper Fiber Epoxy Composite and abbreviated as E.F.E.C. It was found that C.F.E.C. developed in this paper was satisfied with the properties of photoelastic model material that the photoelastic model material should have and that C.F.E.C. had completely properties of composite material. It is thought that C.F.E.C. can be applied to both medical engineering for modeling biological tissue and to the aerospace industry as orthotropic photoelastic material.

Development of Dynamic Photoelastic Experimental Hybrid method for Propagating Cracks in Orthotropic Material (직교이방성체내의 진전 균열에 대한 동적 광탄성 실험의 Hybrid 법 개발)

  • Shin, Dong-Chul;Hawong, Jai-Sug
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.236-241
    • /
    • 2000
  • In this paper, transparent dynamic photoelastic experimental hybrid method for propagating cracks in orthotropic material is developed. Using transparent dynamic photoelastic experimental hybrid method, we can obtain stress intensity factor and separate the stress components from only isochromatic fringe patterns without using isoclinics. It is certified that the dynamic photoelastic experimental hybrid method is very useful for the problems of the dynamic tincture mechanics.

  • PDF

Elastic Buckling Characteristics of Corrugated Pipe Made of Orthotropic Composite Material (직교 이방성 복합재료로 구성된 파형 관로의 탄성좌굴 특성)

  • Han, Taek Hee;Kim, Tae Yeon;Han, Keum Ho;Kang, Young Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.77-84
    • /
    • 2007
  • The elastic buckling strength of a corrugated pipe made of orthotropic material was evaluated. The height and length of a corrugated wave and the thickness of the pipe were considered as factors affecting the buckling strength of the pipe. And also, the ratio of the longitudinal stiffness and transverse stiffness were considered as parameters affecting on the buckling strength of a pipe made of orthotropic material. Buckling strengths of various corrugated pipes with different shapes and stiffness ratio were evaluated by FE analyses. And a formula to estimate the elastic buckling strength was suggested by regression of FE analysis results. Analysis results show that a corrugated pipe has superior buckling strength to a general flat pipe and the suggested formula estimates accurate buckling strength of the corrugated pipe made of orthotropic material.

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.

Axisymmetric dynamic instability of polar orthotropic sandwich annular plate with ER damping treatment

  • Yeh, Jia-Yi
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.25-39
    • /
    • 2014
  • The axisymmetric dynamic instability of polar orthotropic sandwich annular plate combined with electrorheological (ER) fluid core layer and constraining layer are studied in this paper. And, the ER core layer and constraining layer are used to improve the stability of the annular plate system. The boundaries of instability regions for the polar orthotropic sandwich annular plate system are obtained by discrete layer annular finite element and the harmonic balance method. The rheological property of an electrorheological material, such as viscosity, plasticity, and elasticity can be controlled by applying different electric field strength. Thus, the damping characteristics of the sandwich system are more effective when the electric field is applied on the sandwich structure. Additionally, variations of the instability regions for the polar orthotropic sandwich annular plate with different applying electric field strength, thickness of ER layer and some designed parameters are investigated and discussed in this study.

Free Vibration of Orthotropic Laminated Composite Conical Shells (직교이방성 적층 복합재료 원추셸의 자유진동)

  • 이영신;강인식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.595-603
    • /
    • 1989
  • Free vibration of orthotropic laminated composite conical shells with constant thickness are considered. Governing frequency equations are derived based on the Flugge theory and Galerkin method is applied for the numerical analysis. Comparisons are made between present results and others for the isotropic conical shells and numerical results are obtained based on these results for the specially orthotropic laminated composite conical shells with simply supported edges. Variations of frequency parameter on the change of material properties, stacking sequences, stacking number, geometrical parameters and orthotropic parameters are considered in the analysis.

Mixed Mode Crack Extension in Orthotropic Materials (직방성 복합재료에서 혼합모드 균열의 진전)

  • Kang, Seok-Jin;Cho, Hyung-Seok;Lim, Won-Kyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.35-41
    • /
    • 2005
  • The problem of an orthotropic composite material with a central crack inclined with respect to the principal axes of material symmetry is studied. The material is subjected to uniform biaxial loading along its outer boundaries. The normal stress ratio theory is applied to predict initial crack extension behavior in cracked composite materials. The dependence of the crack extension angle with respect to the biaxial loading and the principal axes of material symmetry is discussed. Our analysis shows significant effects of horizontal loading, crack angle and fiber angle on the crack extension.