• Title/Summary/Keyword: Orthotropic Damage

Search Result 44, Processing Time 0.027 seconds

A DAMAGE IDENTIFICATION METHOD FOR THIN CYLINDRICAL SHELLS (얇은 원통형 쉘에 발생한 손상 규명)

  • Oh H.;Cho J.;Lee U.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.394-399
    • /
    • 2005
  • In this paper, a structural damage identification method (SDIM) is developed to identify the line crack-like directional damages generated within a cylindrical shell. First, the equations of motion fur a damaged cylindrical shell are derived. Based on a theory of continuum damage mechanics, a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness, which is dependent of the size and the orientation of the damage with respect to the global coordinates. The present SDIM is then derived from the frequency response function (FRF) directly solved from the dynamic equations of the damaged cylindrical shell. In contrast with most existing SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in damaged state. By virtue of utilizing FRF-data, one may choose as many sets of excitation frequency and FRF measurement point as needed to acquire a sufficient number of equations fer damage identification analysis. The numerically simulated damage identification tests are conducted to study the feasibility of the present SDIM.

  • PDF

Influence of Stacking Composition on Fatigue Bending Strenght in CFRP Composite Laminates Subjected to Impact Loading (충격하중을 받은 CFRP적층판의 피로굽힘강도에 미치는 적층구성의 영향)

  • 임광희;강기광굉;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.147-155
    • /
    • 1996
  • The purpose of present paper is to estimate the static and fatigue bending strengths of CFRP(carbon fiber reinforced plastic) laminates having impact damage(FOD). The specimens which are formed with the different stacking composition, EPOXY and PEEK matirx and orthotropic and quasi-isotropic laminated plates, are prepared for this experiment. A steel ball is impacted on CFRP laminates, generating impact damages, and the three-point fatigue bending test is carried out by using the impacted laminates to investigate the influence of the stackin composition on the fatigue strength of CFRP laminates.

  • PDF

Experimental and Numerical Simulation Studies of Low-Velocity Impact Responses on Sandwich Panels for a BIMODAL Tram

  • Lee, Jae-Youl;Shin, Kwang-Bok;Jeong, Jong-Cheol
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2009
  • This paper describes the results of experiments and numerical simulation studies on the impact and indentation damage created by low-velocity impact subjected onto honeycomb sandwich panels for application to the BIMODAL tram. The test panels were subjected to low-velocity impact loading using an instrumented testing machine at six energy levels. Contact force histories as a function of time were evaluated and compared. The extent of the damage and depth of the permanent indentation was measured quantitatively using a 3-dimensional scanner. An explicit finite element analysis based on LS-DYNA3D was focused on the introduction of a material damage model and numerical simulation of low-velocity impact responses on honeycomb sandwich panels. Extensive material testing was conducted to determine the input parameters for the metallic and composite face-sheet materials and the effective equivalent damage model for the orthotropic honeycomb core material. Good agreement was obtained between numerical and experimental results; in particular, the numerical simulation was able to predict impact damage area and the depth of indentation of honeycomb sandwich composite panels created by the impact loading.

Residual Strength of Fiber Metal Laminates After Impact (충격손상을 받은 섬유 금속 적층판의 잔류 강도 연구)

  • Nam, Hyun-Wook;Lee, Young-Tae;Jung, Chang-Kyu;Han, Kyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.440-449
    • /
    • 2003
  • Residual strength of fiber metal laminates after impact was studied. 3/4 lay up FML was fabricated using 4 ply prepreg, 2 ply aluminum sheets, and 1 ply steel sheet. Quasi isotropic ([0/45/90/-45]s) and orthotropic ([0/90/0/90]s) FRP were also fabricated to compare with FML. Impact test were conducted by using instrumented drop weight impact machine (Dynatup, Model 8250). Penetration load and absorbed energy of FML were superior to those of FRPs. Tensile tests were conducted to evaluate the residual strength after impact. Strength degradation of FML was less than that of FRP. This means that the damage tolerance of FML is excellent than that of FRP. Residual strength of each specimen was predicted by using Whitney and Nuismer(WN) Model. Impact damage area is assumed as a circular notch in WN model. Damage width is defined as the average of back face and top face damage width of each specimen. Average stress and point stress criterions were used to calculate the characteristic length. It is supposing that a characteristic length is a constant. The distribution of characteristic length shows that the assumption is reasonable. Prediction was well matched with experiment under both stress criterions.

A study on the fatigue bending strength of quasi-isotropic CFRP laminates subjected to impact damage (축격손상을 받은 의사등방성 탄소섬유강화 복합재의 굽힘피로강도)

  • Park, Soo-Chul;Park, Seol-Hyeon;Jung, Jong-An;Cha, Cheon-Seok;Yang, Yong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.688-695
    • /
    • 2017
  • Compared to metal, CFRP has excellent mechanical characteristics in terms of intensity, hardness, and heat resistance as well as its light weight that it is used widely in various fields. Therefore, this material has been used recently in the aerospace field. On the other hand, the material has shortcomings in terms of its extreme vulnerability to damage occurring internally from an external impact. This study examined the intensity up to its destruction from repeated use with the internal impact of a CFRP laminated plate that had also been exposed to external impact obtain design data for the external plate of aircraft used in the aerospace field. For the experimental method, regarding the quasi-isotopic type CFRP specimen and orthotropic CFRP specimen that are produced with a different layer structure, steel spheres with a diameter of 5 mm were collided to observe the resulting impact damage. Through a 3-point flexural fatigue experiment, the progress of internal layer separation and impact damage was observed. Measurements of the flexural fatigue strength after the flexural fatigue experiment until internal damage occurs and the surface impacted by the steel spheres revealed the quasi-isotopic layer structure to have a higher intensity for both cases.

Characteristic of Local Behavior in Orthotropic Steel Deck Bridge with Open Ribs according to Running Vehicle (주행차량에 따른 개단면 강바닥판 교량의 국부거동 특성)

  • Lee, Sung-Jin;Kyung, Kab-Soo;Park, Jin-Eun;Lee, Hee-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.101-108
    • /
    • 2012
  • The orthotropic steel deck bridge made by using relatively thin steel plate, and structural members such as transverse and longitudinal ribs, cross beam, etc. in the bridge are fabricated with complex shape by welding. Therefore, the possibility occurring deformation and defects by welding is very high, and stress states in the welded connection parts are very complex. Also, the fatigue cracks in orthotropic steel deck bridge are happening fromthe welded connection parts of secondary member than main member. However, stress evaluation for main members is mainly carried out in the design process of the bridge, detailed stress evaluation and characteristic analysis is not almost reviewed in the structural details which fatigue crack occurred. For the orthotropic steel deck bridge with open ribs which has been serviced for 29 years, in this study, the cause of fatigue crack is investigated and the fatigue safety of the bridge is examined based on fieldmeasurement by the loading test and real traffic condition. Also, structural analyses using gridmodel and detailed analysis model were carried out for the welded connection parts of longitudinal rib and diaphramthat fatigue crack occurred. Additionally, the behavior characteristics due to running vehicles were investigated by using influence area analysis for these structural details, and the occurrence causes of fatigue crack in the target bridge were clarified.

Evaluation of Static Behaviour of Orthotropic Steel Deck Considering the Loading Patterns (하중재하 패턴을 고려한 강바닥판의 정적거동 평가)

  • Kim, Seok Tae;Huh, Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.98-106
    • /
    • 2011
  • The deck of steel box girder bridges is composed of deck plate, longitudinal rib, and transverse ribs. The orthotropic steel decks have high possibility to fatigue damage due to numbers of welded connection part, the heavy contact loadings, and the increase of repeated loadings. Generally, the local stress by the repeated loadings of heavy vehicles causes the orthotropic steel deck bridge to fatigue cracks. The increase of traffic volume and heavy vehicle loadings are promoted the possibility of fatigue cracks. Thus, it is important to exactly evaluate the structural behavior of bridge considering the contact loading area of heavy vehicles and real load patterns of heavy trucks which have effects on the bridge. This study estimated the effect of contact area of design loads and real traffic vehicles through the finite element analysis considering the real loading conditions. The finite element analysis carried out 4 cases of loading patterns in the orthotropic steel deck bridge. Also, analysis estimated the influence of contact area of real truck loadings by the existence of diaphragm plate. The result of finite element analysis indicated that single tire loadings of real trucks occurred higher local stress than one of design loadings, and especially the deck plate got the most influence by the single tire loading. It was found that the diaphragm attachment at joint part of longitudinal ribs and transverse ribs had no effects on the improvement of structural performance against fatigue resistance in elastic analysis.

The Effects of Temperature Change on the Residual Bending Strength of CFRP Laminates after Impact (온도변화가 CFRP 적층재의 충격후 잔류굽힘강도에 미치는 영향)

  • Ra Seung-woo;Jung Jong-an;Yang In-young
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, when CF/EPOXY laminates for high efficiency space structure are subjected to FOD(Foreign Object Damage), the effects of temperature change on the impact damages(inter laminar separation and transverse crack) of CF/EPOXY laminates and the relationship between residual life and impact damages ale experimentally investigated. Composite laminates used in this experiment are CF/EPOXY orthotropic laminated plates, which have two-interfaces $[0^{\circ}_6/90^{\circ}_6]S$ and four-interfaces $[0^{\circ}_3/90^{\circ}_6/0^{\circ}_3]S$. CF/EPOXY specimens with impact damages caused by a steel ball launched from the air gun were observed by the scanning acoustic microscope under room and high temperatures. In this experimental results, various relations were experimentally observed including the delamination area vs. temperature change, the bending strength vs. impact energy and the residual bending strength vs. impact damage of CF/EPOXY laminates. And as the temperature of CF/PEEK laminates increases, the delaminaion areas of impact-induced damages decrease linearly. A linear relationship between the impact energy and the delamination areas were observed. As the temperature of CF/PEEK laminates increases, the delamination areas decrease because of higher initial delaminatin damage energy.

A Tensile Criterion to Minimize FE Mesh-Dependency in Concrete Beam under Blast Loading (폭발하중을 받는 콘크리트 보의 요소의존성 최소화 인장기준식)

  • Kwak, Hyo-Gyoung;Gang, HanGul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.137-143
    • /
    • 2017
  • A tensile failure criterion that can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept is introduced, and conventional plasticity based damage models for concrete such as CSC model and HJC model, which are generally used for the blast analyses of concrete structures, are compared with orthotropic model in blast test to verify the proposed criterion. The numerical prediction of the time-displacement relations in mid span of the beam during blast loading are compared with experimental results. Analytical results show that the numerical error is substantially reduced and the accuracy of numerical results is improved by applying a unique failure strain value determined according to the proposed criterion.

Relief Hole for Improvement of Fatigue Strength in Welded Intersections of Transverse and Longitudinal Ribs in Orthotropic Deck (가로리브와 U리브 용접부의 피로강도 향상을 위한 응력완화홀)

  • Jung, Kyoung Sup;Nam, Seung Hoon;Yang, Keon Bong;Kim, Kyoung Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.419-430
    • /
    • 2014
  • On going researches which are being made on the welded joints at the intersections of closed ribs such as U-ribs with floor-beams in ortho-tropic steel decks still have been used the shape of scallops with or with not diaphragm inside. Stress Relief Hole(SRH) being presented in this study was investigated in order to reduce the fatigue damage in the intersections of U-rib with floor-beam. Finally, it is verified that circular SRHs sufficiently relief the concentration stress at the intersections of U-rib with floor-beam and shows that SRH can be offer one of the methods that can prevent the fatigue damage in these structural details.