• 제목/요약/키워드: Orthotropic

검색결과 730건 처리시간 0.025초

직교이방성 박판 및 후판의 해석연구 (Study on the Analysis of Orthotropic Thin Plates and Orthotropic Thick Plates)

  • 박원태;최재진
    • 한국산학기술학회논문지
    • /
    • 제4권2호
    • /
    • pp.76-80
    • /
    • 2003
  • 본 연구에서는 직교이방성 박판 및 후판의 휨문제에 대한 해석결과를 제시하였다. 수치해석방법으로는 유한요소법을 사용하였으며, 직교이방성판 휨문제에 대한 지배방정식은 Kirchhoff가정에 의한 박판이론과 Mindlin 가정에 의한 후판이론을 이용하여 유도하였으며 판의 폭-두께비의 변화에 따른 해석결과를 비교 검토하였다.

  • PDF

경계요소법(BEM)에 의한 복합재료의 응력확대계수 해석 (An Analysis of Stress Intensity Factors of Composite Materials by Boundary Element Method (BEM))

  • 이갑래;조상봉;최용식
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.179-189
    • /
    • 1991
  • 본 연구에서는 특성근이 같은 같은 경우의 기본해 유도에서 사용하였던 상사 방법을 이용하여, 균열끝 부근의 응력장과 변위장을 나타내고자 한다. 위의 해석을 바탕으로 개발한 프로그램의 정도에 대하여 검증하고, 이 프로그램을 복합재료 내의 균열 문제에 응용하여 응력확대계수에 관한 자료를 계산하고, 그 유용성을 검토하고자 한다.

직교이방성체 반사형 광탄성 실험 하이브리드 법 개발에 관한 연구 (A Study on the Development of Reflection Type Photoelastic Experimental Hybrid Method for Orthotropic Materials)

  • 신동철;황재석;남정환;이준현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.228-233
    • /
    • 2008
  • The reflection type photoelastic experiment can be used more effectively than the transparent type photoelastic experiment in industrial fields. However, the reflection type photoelastic experiment for orthotropic material has not been studied. Therefore, the reflection type photoelastic experimental hybrid method for the fracture mechanics of orthotropic material was developed in this research. Comparing the results obtained from this method with those from the hybrid method for isotropic material about the same isotropic specimen, the validity of this method was verified. And then, the reflection type photoelastic experiment for orthotropic material was applied to the orthotropic plates with a central crack of the various inclined angle. Using this hybrid method for the orthotropic material, it is able to obtain stress intensity factors and separate stress components at the vicinity of the crack-tip in orthotropic plates from only the isochromatic fringe patterns of isotropic coating material.

  • PDF

Position optimization of circular/elliptical cutout within an orthotropic rectangular plate for maximum buckling load

  • Choudhary, Prashant K.;Jana, Prasun
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.39-51
    • /
    • 2018
  • Position of a circular or elliptical cutout within an orthotropic plate has great influence on its buckling behavior. This paper aims at finding the optimal position (both location and orientation) of a single circular/elliptical cutout, within an orthotropic rectangular plate, that maximizes the critical buckling load. We consider linear buckling of simply supported orthotropic plates under uniaxial edge loads. To obtain the optimal positions of the cutouts, we have employed a MATLAB optimization routine coupled with buckling computation in ANSYS. Our results show that the position of the cutout that maximizes the buckling load has great dependence on the material properties, laminate configurations, and the geometrical parameters of the plate. These optimal results, for a number of plate geometries and cutout sizes, are reported in this paper. These results will be useful in the design of perforated orthotropic plates against buckling failure.

직교 이방성 판 이론을 이용한 바닥판 활하중 모멘트 산정식 개발 (Development of Live Load Moment Equations Using Orthotropic Plate Theory)

  • 안예준;남석현;박장호;신영석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.749-756
    • /
    • 2006
  • Because of the orthotropic elastic properties and significant two-way bending action, orthotropic plate theory may be suitable for describing the behavior of concrete filled grid bridge decks. Current AASHTO LRFD Bridge Design Specification(2004) has live load moment equations considering flexural rigidity ratio between longitudinal and transverse direction, but the Korea highway bridge design specification(2005) doesn't. The Korea highway bridge standard specification LRFD(1996) considers an orthotropic plate model with a single load to estimate live load moments in concrete filled grid bridge decks, which may not be conservative. This paper presents live load moment equations for truck and passenger car, based on orthotropic plate theory. The equations of truck model use multiple presence factor, impact factor, design truck and design tandem of the Korea highway bridge standard specification LRFD(1996). The estimated moments are verified through finite-element analyses.

  • PDF

벌크헤드 플레이트가 부착된 강바닥판교의 피로상세 개선 연구 (A Study on Improvement of fatigue Details in Orthotropic Steel Deck Bridge with Bulkhead Plate)

  • 공병승
    • 한국해양공학회지
    • /
    • 제18권1호
    • /
    • pp.22-27
    • /
    • 2004
  • An orthotropic steel deck system is widely adapted form for a long-span bridge. It has many advantages, such as the big reduction of dead weight, the simplicity for erection, and the reduction of the construction period. However, an orthotropic steel deck system requires a lot of welding work, which may result in defects and deformation of connection. Therefore, the research for the general behavior and fatigue strength of the several details in orthotropic steel deck bridge is necessary. The fatigue failure with distortion results from secondary stress by out-of-plane deformation; these kinds of cracks are very difficult to measure, and can not be precisely calculated through finite element analysis. This stress concentration phenomenon generates the fatigue failure around the lower scallop of the transverse rib. This paper presents improved details of the intersection between the longitudinal rib and the transverse rib of an orthotropic steel deck bridge by the third dimensional hit size test, and the finite element method, which can minimize local stress through parametric study.

A dynamic nondestructive damage detection methodology for orthotropic plate structures

  • Gandomi, Amir Hossein;Sahab, Mohammad G.;Rahai, Alireza
    • Structural Engineering and Mechanics
    • /
    • 제39권2호
    • /
    • pp.223-239
    • /
    • 2011
  • This paper presents a methodology to detect and locate damages and faults in orthotropic plate structures. A specific damage index based on dynamic mode shapes of the damaged and undamaged structures has been introduced. The governing differential equation on transverse deformation, the transverse shear force equations and the invariant expression for the sum of transverse loading of an orthotropic plate are employed to obtain the aforementioned damage indices. The validity of the proposed methodology for isotropic and orthotropic damage states is demonstrated using a numerical example. It is shown that the algorithm is able to detect damages for both isotropic and orthotropic damage states acceptably.

The effect of non-homogeneity on the stability of laminated orthotropic conical shells subjected to hydrostatic pressure

  • Zerin, Zihni
    • Structural Engineering and Mechanics
    • /
    • 제43권1호
    • /
    • pp.89-103
    • /
    • 2012
  • In this study, the stability of laminated homogeneous and non-homogeneous orthotropic truncated conical shells with freely supported edges under a uniform hydrostatic pressure is investigated. It is assumed that the composite material is orthotropic and the material properties depend only on the thickness coordinate. The basic relations, the modified Donnell type stability and compatibility equations have been obtained for laminated non-homogeneous orthotropic truncated conical shells. Applying Galerkin method to the foregoing equations, the expression for the critical hydrostatic pressure is obtained. The appropriate formulas for the single-layer and laminated, cylindrical and complete conical shells made of homogeneous and non-homogeneous, orthotropic and isotropic materials are found as a special case. Finally, effects of non-homogeneity, number and ordering of layers and variations of shell characteristics on the critical hydrostatic pressure are investigated.

이방성 섬유의 배열이 복합재료의 응력에 미치는 영향 (Effects of Anisotropic Fiber Packing on Stresses in Composites)

  • 이정기;이형민
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1284-1296
    • /
    • 2004
  • In order to investigate effects of anisotropic fiber packing on stresses in composites, a Volume Integral Equation Method is applied to calculate the elastostatic field in an unbounded isotropic elastic medium containing multiple orthotropic inclusions subject to remote loading, and a Mixed Volume and Boundary Integral Equation Method is introduced for the solution of elastostatic problems in unbounded isotropic materials containing multiple anisotropic inclusions as well as one void under uniform remote loading. A detailed analysis of stress fields at the interface between the isotropic matrix and the central orthotropic inclusion is carried out for square, hexagonal and random packing of orthotropic cylindrical inclusions, respectively. Also, an analysis of stress fields at the interface between the isotropic matrix and the central orthotropic inclusion is carried out, when it is assumed that a void is replaced with one inclusion adjacent to the central inclusion of square, hexagonal and random packing of orthotropic cylindrical inclusions, respectively, due to manufacturing and/or service induced defects. The effects of random orthotropic fiber packing on stresses at the interface between the isotropic matrix and the central orthotropic inclusion are compared with the influences of square and hexagonal orthotropic fiber packing on stresses. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with multiple orthotropic inclusions and one void, it will be established that these new methods are very accurate and effective for investigating effects of general anisotropic fiber packing on stresses in composites.

Effect of cross-beam on stresses revealed in orthotropic steel bridges

  • Fettahoglu, Abdullah
    • Steel and Composite Structures
    • /
    • 제18권1호
    • /
    • pp.149-163
    • /
    • 2015
  • Orthotropic steel highway bridges exist almost everywhere in world, especially in Europe. The design of these bridges started very early in 20th century and ended with a conventional orthotropic steel bridge structure, which is today specified in DIN FB 103. These bridges were mostly built in 1960's and exhibit damages in steel structural parts. The primary reason of these damages is the high pressure that is induced by wheel- loads and therefore damages develop especially in heavy traffic lanes. Constructive rules are supplied by standards to avoid damages in orthotropic steel structural parts. These rules are first given in detail in the standard DIN 18809 (Steel highway- and pedestrian bridges- design, construction, fabrication) and then in DIN- FB 103 (Steel bridges). Bridges built in the past are today subject to heavier wheel loads and the frequency of loading is also increased. Because the vehicles produced today in 21st century are heavier than before and more people have vehicle in comparison with 20th century. Therefore dimensioning or strengthening of orthotropic steel bridges by using stiffer dimensions and shorter spans is an essence. In the scope of this study the complex geometry of conventional steel orthotropic bridge is generated by FE-Program and the effects of cross beam web thickness and cross beam span on steel bridge are assessed by means of a parameter study. Consequently, dimensional and constructional recommendations in association with cross beam thickness and span will be given by this study.