• 제목/요약/키워드: Orthoimplication Algebras

검색결과 1건 처리시간 0.013초

양자논리를 위한 직교함의 대수에서의 준동형사상 (A Homomorphism on Orthoimplication Algebras for Quantum Logic)

  • 연용호
    • 융합정보논문지
    • /
    • 제7권3호
    • /
    • pp.65-71
    • /
    • 2017
  • 양자논리는 양자역학을 위한 수학적 구조인 힐버트 공간에서의 사영을 다루기 위해 Birkhoff와 von Neumann에 의해 소개되었고 Husimi는 이 양재논리를 보완하기 위해 직교모듈라의 성질과 직교모듈라 격자를 제안하였다. Abbott은 직교모듈라 격자에서의 함의를 연구하기 위해 직교함의 대수와 그 성질을 소개하였다. 직교모듈라 격자에서 가환관계는 분배법칙과 모듈라 성질 등과 관련된 중요한 성질이다. 본 논문에서는 직교함의 대수에서의 한 이항연산과 이를 이용한 최대하계를 정의하고 그 이항연산의 성질을 밝힌다. 또한 준동형사상을 정의하고 이를 이용하여 직교함의 대수에서의 가환관계를 특성화한다.