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A Homomorphism on Orthoimplication Algebras for Quantum Logic
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Abstract The quantum logic was introduced by G. Birkhoff and J. von Neumann in order to study projections
of a Hilbert space for a formulation of quantum mechanics, and Husimi proposed orthomodular law and
orthomodular lattices to complement the quantum logic. Abott introduced orthoimplication algebras and its
properties to investigate an implication of orthomodular lattice. The commuting relation is an important
property on orthomodular lattice which is related with the distributive law and the modular law, etc. In this
paper, we define a binary operation on orthoimplication algebra and the greatest lower bound by using this
operation and research some properties of this operation. Also we define a homomorphism and characterize

the commuting relation of orthoimplication algebra by the homomorphism.
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1. Introduction An ortholattice is a bounded lattice L with an

orthocomplement ~ which satisfies the following[3] : for
The quantum logic was introduced by G. Birkhoff every a,b €1

and J. von Neumann in order to study projections of a (1) a < b implies b’ < d,

Hilbert space for a formulation of quantum mechanics, 2 ' =a,

and Husimi proposed orthomodular law and (3) avd =1 and ard =0.

orthomodular lattices to complement  the quantum An  orthomodular lattice is an ortholattice L
logic[1,2]. satisfying the orthomodular law{3]
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a < b implies aV (¢’ Ab) =b

Finch  introduced
implications that are defined on an orthomodular
lattice[45]. Abbott and Chajda et al. proposed

orthoimplication algebras and orthomodular implication

logical  conjunctions  and

algebras, respectively, as another types of quantum
logic[6-8], and some operations and logical structures
were considered to describe the quantum logic[3,9-13].

Lattice theory is a mathematical basis for role-based
security[14]. Quantum computing technology is used in
many fields such as cryptography, security and
algorithm, etc.. and the need for quantum logic is
increasing due to the development of quantum
computers[15-17].

The commuting relation is an important property on
orthomodular lattice which is related with the
distributive law and the modular law, etc. In this paper,
we define a binary operation on orthoimplication
algebra and research some properties of this operation.
Then we define an anti A -homomorphism by the
binary operation and characterize the commuting

relation by this homomorphism.

2. A Binary Operation on
Orthoimplication Algebras

An orthoimplication algebra is an algebraic system
(4, -
for every a, b, c € A,

(IA1) (ab)a=a,

(IA2) (ab)b=(ba)a,

(IA3) a((ba)c) = ac.

) of type 2 satisfying the following axioms[6]:

Lemma 2.1. ([6]) Let (4, - ) be an orthoimplication
algebra. Then A contains an element 1 and satisfies
the following properties:

1) aa=1,
(2) la=a,
(3) al=1,
4) ab=ba = a=0b,
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5) alba) =1,

6) alab) =ab,

(7 ab=1 = a(be) =ac,
® ab=1 = (bc)(ac) =1.

An orthoimplication algebra 4 is a poset with a
partial order < defined by
a<b & ab=1
for any a, b € A, and A is a V —semilattice with
aVvb=(ab)b
for every a, b € A[6].

Lemma 2.2. Let (4,-)
algebra. Then A satisfies the following properties:
(1) a < ba,
2 a<b = albe) =ac,
3 a<b = bc<ac.

be an orthoimplication

Proof. It is clear from Lemma 2.1. U
Lemma 2.3. ([6]) Let (4, - ) be an orthoimplication
algebra. If uw<a<b for any wu,a,b<EA, then
b= (bu)a.

Every principal order filter [a,1]={2z €A4la <z }
in orthoimplication algebra A4 is an orthomodular lattice
1, defined by

a

with an orthocomplimentation

" =za for every = €la, 1], and conversely every
semi-orthomodular lattice A4, ie, a join semilattice
with greatest element in which every principal filter is

an orthomodular lattice and satisfies the compatibility
condition: w<a<b = b :bJ"\/a, is an
orthoimplication algebra with a binary operation

defined by ab=(a\Vb)"" for every a, b € A[6).

Theorem 2.4. If A is an orthomodular lattice, then
(4, - ) is an orthoimplication algebra with
ab=(a AV )\Vb

for every a, b € A.
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Proof. Let a, b = A. Then we have
(ab)a= (((a' AV ) VD) ANd' ) Va
=(((a' AD) AV )ANG ) Va
= AV) AW Ad))Va
=0Va
= a.
satisfies the axiom (IA1). Also,
(((@" AD')VB) AY) Vb
(((@" AD) A )AL ) VD
(lavo) A AY))VD
((aVb) A )V
=aVb
by the orthomodular law since b < a '\ b. Similarly, we
can show (ba)a=0bV a. Hence
(ab)b=aVvb=bVa=(ba)a.
To show that (A4, - ) satisfies the axiom (OIA3), let
a,b,c €A and z=(ba)" Ac'. Then
(ba)e=((ba)" N ')\/c:z\/c.
Since a < (W' Ad ) Va=ba, (ba) <
x=(ba) N <d N,
This follows that
a((ba)c) =alzVe)
:(a’/\(ac\/c)/)V(w\/c)
(a’/\(;c//\c/))V(w\/c)
((a N )NZ' )Va) Ve
"Ac")Ve (by orthomodular law)

Hence (4, - )
(ab)b=

(
(a

C.

Hence (4, - ) is an orthoimplication algebra. ]
Theorem 2.5. A is an orthomodular lattice if and only
if A is an orthoimplication algebra with the smallest

element 0.

Proof. (=) It is clear from Lemma 2.4.

(&) Let A be an orthoimplication algebra with the
smallest element 0. Then by Theorem 4 of [6], the
principal filter A =1[0,1] is an orthomodular lattice

with an orthocomplementation * given by a’ = a0 for
every a € A. J
Let (4, - ) be an orthoimplication algera with the
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smallest element 0. Then we can define a binary
operation * on A by
a*tb=(b'd")
for every a, b € A, where ' =20 for every x €A.
From now on, we will consider all orthoimplication
algebras have the smallest element 0.

Lemma 2.6. Let A be an orthoimplication algebra.

* satisfies the following:

Then the binary operation
1 a<b e a*b=0,
(2) a*0=a and 0*a =0,
() 1*a=ad,
(4) a*b < qa, ie, (a*b)*a=0,
B)a<b = c*b < c*a,

Proof. Tt is clear from the definition of the binary
operation * on A. L]
Theorem 2.7. Let A be an orthoimplication algebra.
Then A4 is a A —semilattice with

anb=a*(a*b) =b*(b*a)
for every a, b € A.

Proof. Let a, b € A. Then
a*(a*b) = ((a*b)'a’) = ((t'a')a")’
=((a'0)b") =((b*a)'b") =b*(b*a)
by (IA2). Also a*(a*b) < a and
a*(a*b) =b*(b*a) < b
by Lemma 2.6(4). That is, a*(a*b) is a lower bound
of a and b. Suppose that ¢ < a and ¢ < b. Then

a <c and b <. Since 4 is a V ~semilattice with
a Vv =0'd)d, (b'a')d <. This implies

c< ((t'a')d) =a*(a*D).
Hence a*(a*b) is the greatest lower bound of @ and
b, and aAb=a*(a*b). []

Lemma 2.8. Let A be an orthoimplication algebra.
Then A satisfies the following:

1) a*b<c < a*ec<b,

(2 b<ec = (a*b)*c=a*c,

B)a<b= d*b=V,
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(4) and =0

Proof. (1) Let a*b < c. Then

a*c < a*(a*b) =anb<b
by Lemma 2.6(5) and Theorem 2.7.
(2) Let b<c. Then ¢ < ¥, and

(a*b)*e=(c (V') = (c'd") =a*c

by Lemma 2.2(2).
(3) Let a < b. Then

a*b=(1*a)*b=1*%b=1"".
by Lemma 2.6(3) and (2) of this lemma,
(4) Let a €A. Then

and =d*(a'*a) =d*ad =0

by Theorem 2.7 and (3) of this lemma. OJ

3. A Homomorphism of
Orthoimplication Algebras

Let A be an orthoimplication algebra. Then for each
u €A, we define a map ¢, : 4— A by
©y, (a) =u*a

for every a €A

Lemma 3.1. Let A be an orthoimplication algebra and
u, a, b €A. Then the map ¢, satisfies the following:
M a<db= p,(b)<¢p,la),
(2) ¢, is a bijective map and ¢,(a) =d’
B u<a e gou(a) =0,
@ p,(a) <b= ¢,b) <a

Proof. (1) Let a < b. Then by Lemma 2.6(5),
@u(b) =u*b < u*a= apu(a),
(2) For every a €4, ¢,(a)=1*a=ad by Lemma
2.6(3) and definition of the map ¢,.
Let ¢,(a) =¢,(b). Then @’ =b" implies
a=d =b"=b,
Hence ¢, is injective. Let a €A. Then there is an

element o' €A such that ¢,(a’) =a"" =a. This

implies ¢, is surjective. Hence ¢, is bijective.

(3) 1t is clear from Lemma 2.6(1).

(4) Let ¢,(a) <b. Then u*a < b implies u*b < a
by Lemma 2.8(1). Hence ¢, (b) < a. ]

Theorem 3.2. Let A be an orthoimplication algebra
and u €A. Then the map ¢, : A— A is an anti A

~homomorphism of A. That is,
p.lanb) =g¢,(a)Ve,(b)
for every a, b €A.

Proof. Let a, b €A. Then aANb < a and aAb < b. By
Lemma 3.1(1),

v, (a) < ¢, (anb) and ¢, (b) < ¢, (aAD).
This implies that ¢, (aAb) is an upper bound of
¢,(a) and ¢, (b).

Suppose that ¢ is an upper bound of ¢, (a) and ¢, (b).
Then ¢,(a) <c and ¢,(b) <c. This implies
v,(c)<a and ¢,(c) <b by Lemma 31(4), so
¢,(c) <anb, and ¢,(anb) < c by Lemma 3.1(4).
Hence ¢, (aAb) is the least upper bound of ¢, (a)
and <,0”(b), and go,l(a/\b) = <p“(a) \/gou(b). ]

The anti A ~homomorphism ¢, is not an anti V

~homomorphism in general as the following example

shows.

Example 3.3. Let A=10, z, y, z, w, 1}. If we define

a binary operation + on A by the following table:

1 =z y z w 0
111 =z vy 2z w 0
z|1 1 y 2z w vy
y|1l = 1 2z w =
z|1 =z y 1 w w
wll x y =z 1 =z
o1 1 1 1 1 1

then (4, -
diagram of Fig. 1. The binary operation * on A is
defined by the following table:

) is an orthoimplication algebra with Hasse
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1
T w
0
Fig. 1. Hasse diagram of (4, -+ )
*1'1 oy 2z w 0
110 v 2 w =z 1
|0 0 =z x x =
y|0 v 0 y vy y
z|0 =z =z 0 2z =z
w0 w w w 0 w
0jo0 0O 0O 0 0 O

For z,y, z €4, goz(y\/z) =<,01,(1) =7*1=0 and
gof(y)/\cpx(z):(:c*y)/\(x*z):xAzzm.That is,
0, (yVvz) = o, (y) Ap,(2), and ¢, is not anti V

~homomorphism of A.

For each element u in an orthoimplication algebra

A, the map ¢, : A— A is antitone and
goql(a) cel,u]l={zrcdlo<z<u}
since ¢, (a) =u*a < u. Also, for every a [0, u],
there is an element ¢, (a) €0, u] such that
0, (p,(a)) =u*(u*a) =uNa=a,
hence the co-testriction ¢, : A— [0, u] of ¢, is
surjective. If we define
Kerp, :={z €4y, (z) =0},

then Kerp, =[u, 1] by Lemma 26(1) and it is a
principal filter of A.

Lemma 3.4. Let A be an orthoimplication algebra and
u €A. Then the map ¢, satisfies the following:

(D ¢,(1)=0 and ¢,(0) =u,

2 a<b= p,(a)*b=¢, (),

3 ¢,(a) Aa=0,

) ¢,(a") =a for every a €10, u],

B, (a) =¢,(b) & a=b for every a, b €[0, ul.
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Proof. (1) ¢, (1) =u*1=0 since u < 1. Also, ¢, (0)

=u*0=wu by Lemma 2.6(2).

(2) Let @ < b. Then by Lemma 2.8(2),
<pu(a)*b=(u*a)*b=u*b=<pu(b).

(3) Let a €A. Then by (2) of this lemma,

e, (a) Na=p,(a)*(p,(a)*a) =¢,(a)*p,(a) =0.
(4) Let a < u. Then v’ < ', and by Lemma 2.8(3),
o, (d)=u*d =u'"*d' =d" =a.

(5) Let a, b €0, u] and ¢, (a) =, (b). Since a < u

and b < u, we have
a=uia=g,(p,(a)) =¢,(p,0) =unb=b.
]

The converse direction is trivial.

Let A be an orthoimplication algebra and a, b € A.
Then we say that a commutes with b, denoted by
aCh, if a= (aAb)V (aAD).

Let ¢> =,  ¢,. Then for every b €A,

02 (b) = ¢, (p, (b)) = a*(a*b) = a b,
hence we can define the commuting relation aCb by
a=p2 (D) V().

Theorem 3.5. Let A be an orthoimplication algebra
and a, b €EA. Then aCb if and only if
0. (D) Ap, () =0.

Proof. Let aCb. Then we have
a=g;(0) Vel (V) =p,(p, ) Ap, 1))
since ¢, is anti A -homomorphism. Also since
©0,(0)=a, ©,(0)=¢,(0,(b) Ap,(b)). Hence
0=1,() A, (V')
by Lemma 3.4(5) since 0, ¢,(b) Ay, (b") € [0, a].
Conversely, suppose that 0=, (b) A, (b"). Then
since ¢, is anti A ~homomorphism,
0.(0) =p,(p, () Ap, (b))
=0,(p,(0)) Ve, (g, (b))
= (D) Vi (),
This implies a= 2 (b) V2 ().

and ¢,(0) =a.
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Hence aCb.

4. Conclusions

The orthoimplication algebra is an algebraic
structure with implication defined on orthomodular
lattice. Orthomodular lattices do not satisfy the
distributive law in general. Because the commuting
relation C'is closely related with the distributive law in
orthomodular lattices, the commuting relation was
studied by some literature. In this paper we define a
anti A ~homomorphism and the commuting relation on
orthoimplication algebras and research the properties of
the the

commuting relation is characterized by the anti A

anti A ~homomorphism. In particular,

~homomorphism of orthoimplication algebras.
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