• Title/Summary/Keyword: Orthogonal transformation

Search Result 85, Processing Time 0.026 seconds

Design of Controller for Nonlinear System Using Modified Orthogonal Neural Network (수정된 직교 신경망을 이용한 비선형 시스템 제어기 설계)

  • Kim, Sung-Sik;Lee, Young-Seog;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.142-145
    • /
    • 1997
  • This paper presents an modified orthogonal neural network(MONN) based on orthogonal functions and applies the network to nonlinear system control. The accuracy of orthogonal neural network is essentially dependent on the choice of basic orthogonal functions. Modified orthogonal neural network is modified model of orthogonal neural network with input transformation to adapt its basic orthogonal functions. The results show that the modified orthogonal neural network has the excellent performance of approximating and controlling nonlinear systems and the input transformation make the ability of modified orthogoneural neural network better than one of orthogonal neural network.

  • PDF

A Study on fast LIFS Image Coding Using Adaptive Orthogonal Transformation (적응 직교변환을 이용한 LIFS 부호화의 고속화에 관한 연구)

  • 유현배;박경남;박지환
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.658-667
    • /
    • 2004
  • For digital image compression, various fractal image coding schemes using the self-similarity of image have been studied extensively. This paper discusses the problem that occurs during the calculating process of adaptive orthogonal transformation and provides improvements of LIFS coding scheme using the transformation. This proposed scheme has a better performance than JPEG for a wide range of compression ratio. This research also proposes an image composition method consisting of all domains of the transformation. The results show that the arithmetic operation processes of the encoder and the decoder become much smaller even without the distortion of the coding performance.

  • PDF

Analysis of 2-Dimensional Shallow Water Equations Using Multigrid Method and Coordinate Transformation

  • Lee, Jong-Seol;Cho, Won-Cheol
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • Various numerical methods for the two dimensional shallow water equations have been applied to the problems of flood routing, tidal circulation, storm surges, and atmospheric circulation. These methods are often based on the Alternating Direction Implicity(ADI) method. However, the ADI method results in inaccuracies for large time steps when dealing with a complex geometry or bathymetry. Since this method reduces the performance considerably, a fully implicit method developed by Wilders et al. (1998) is used to improve the accuracy for a large time step. Finite Difference Methods are defined on a rectangular grid. Two drawbacks of this type of grid are that grid refinement is not possibile locally and that the physical boundary is sometimes poorly represented by the numerical model boundary. Because of the second deficiency several purely numerical boundary effects can be involved. A boundary fitted curvilinear coordinate transformation is used to reduce these difficulties. It the curvilinear coordinate transformation is used to reduce these difficulties. If the coordinate transformation is orthogonal then the transformed shallow water equations are similar to the original equations. Therefore, an orthogonal coorinate transformation is used for defining coordinate system. A multigrid (MG) method is widely used to accelerate the convergence in the numerical methods. In this study, a technique using a MG method is proposed to reduce the computing time and to improve the accuracy for the orthogonal to reduce the computing time and to improve the accuracy for the orthogonal grid generation and the solutions of the shallow water equations.

  • PDF

Modal transformation tools in structural dynamics and wind engineering

  • Solari, Giovanni;Carassale, Luigi
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.221-241
    • /
    • 2000
  • Structural dynamics usually applies modal transformation rules aimed at de-coupling and/or minimizing the equations of motion. Proper orthogonal decomposition provides mathematical and conceptual tools to define suitable transformed spaces where a multi-variate and/or multi-dimensional random process is represented as a linear combination of one-variate and one-dimensional uncorrelated processes. Double modal transformation is the joint application of modal analysis and proper orthogonal decomposition applied to the loading process. By adopting this method the structural response is expressed as a double series expansion in which structural and loading mode contributions are superimposed. The simultaneous use of the structural modal truncation, the loading modal truncation and the cross-modal orthogonality property leads to efficient solutions that take into account only a few structural and loading modes. In addition the physical mechanisms of the dynamic response are clarified and interpreted.

Orthogonal Grid Generation Using Linear Grid Generating Equations (선형 격자 형성 방정식을 이용한 직교 격자 형성에 관한 연구)

  • Lee S. W.;Kwon J. H.;Kwon O. J.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.14-21
    • /
    • 2000
  • A method of two and three dimensional orthogonal grid generation with control of spacing by using the covariant Laplace equation is presented. An important feature of the methodology is its ability to control effectively the grid spacing especially near the boundaries still maintaining good orthogonality in whole field. The method is based on the concept of decomposition of the global transformation into consecutive transformation of an approximate conformal mapping and an auxiliary orthogonal mapping to have linear and uncoupled equations. Control of cell spacing is based on the concept of reference arc length, and orthogonal correction is peformed in the auxiliary domain. It is concluded that the methodology can successfully generate well controlled orthogonal grids around bodies of 2 and 3 dimensional configurations.

  • PDF

Orthogonal Grid Generation Using Linear Grid Generating Equations (선형 격자 형성 방정식을 이용한 직교 격자 형성에 관한 연구)

  • Lee S. W.;Kwon J. H.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.99-106
    • /
    • 2000
  • A method of two and three dimensional orthogonal grid generation with control of spacing by using the covariant Laplace equation is Presented. An important feature of the methodology is its ability to control effectively the grid spacing especially near the boundaries still maintaining good orthogonality in whole field. The method is based on the concept of decomposition of the global transformation into consecutive transformation of an approximate conformal mapping and au auxiliary orthogonal mapping to have linear and uncoupled equations. Control of cell spacing is based on the concept of reference arc length, and orthogonal correction is performed in the auxiliary domain. It is concluded that the methodology can successfully generate well controlled orthogonal grids around bodies of 2 and 3 dimensional configurations.

  • PDF

Voice personality transformation using an orthogonal vector space conversion (직교 벡터 공간 변환을 이용한 음성 개성 변환)

  • Lee, Ki-Seung;Park, Kun-Jong;Youn, Dae-Hee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.96-107
    • /
    • 1996
  • A voice personality transformation algorithm using orthogonal vector space conversion is proposed in this paper. Voice personality transformation is the process of changing one person's acoustic features (source) to those of another person (target). In this paper, personality transformation is achieved by changing the LPC cepstrum coefficients, excitation spectrum and pitch contour. An orthogonal vector space conversion technique is proposed to transform the LPC cepstrum coefficients. The LPC cepstrum transformation is implemented by principle component decomposition by applying the Karhunen-Loeve transformation and minimum mean-square error coordinate transformation(MSECT). Additionally, we propose a pitch contour modification method to transform the prosodic characteristics of any speaker. To do this, reference pitch patterns for source and target speaker are firstly built up, and speaker's one. The experimental results show the effectiveness of the proposed algorithm in both subjective and objective evaluations.

  • PDF

A Study on Cross-correlation Control Schemes on Walsh and Golay Codes Based on the Orthogonal Transformation and BER Performance Evaluation of Asynchronous CDMA System Using the Modified Codes (직교변환에 의한 Walsh 및 Golay 코드의 상호상관 제어방식과 수정된 코드를 사용한 비동기 CDMA 시스템의 비트오율 성능에 관한 연구)

  • Lee, Won-Chang;Kim, Myoung-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.4
    • /
    • pp.304-312
    • /
    • 2008
  • Orthogonal codes like Walsh and Golay codes may have large correlation value when they are not synchronized, hence they are seldom used in asynchronous CDMA systems. Wysocki[1] showed that by multiplying the original Walsh-Hadamard matrix with an orthogonal transformation matrix the resultant matrix sustains orthogonality between row vectors and their cross-correlation can be reduced. Soberly and Wysocki[2] proposed similar scheme on Golay codes. This implies that using the proper orthogonal transformation cross-correlation of Walsh and Golay codes can be reduced, and the transformed codes can be used for user separation in the CDAM reverse link. In this paper we discuss cross-correlation related parameters which affect the performance of an asynchronous CDMA link, and we investigate the correlation properties of the transformed codes. When we designed orthogonal transformation matrices for Walsh and Golay codes, we minimized the maximum value of aperiodic cross-correlation of the codes ($ACC_{max}$) or the mean square value of the aperiodic cross-correlation($R_{cc}$) with preserving the orthogonality of the modified codes. We also evaluate the asynchronous CDMA system that uses the transformed Walsh and Golay codes.

  • PDF

Analysis of binary data by empirical logit transformation and the type of Freeman-Tukey inverse sine transformation (경험로지트변환과 Freeman-Tukey형 역정현 변환에 의한 계수치 자료의 해석)

  • 김홍준;채규용;이상용
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.42
    • /
    • pp.1-8
    • /
    • 1997
  • In case of analysis of discrete data, it shows by way of example orthogonal array experiment for o, 1 data. This paper introduced expirical logit transformation and the type of Freeman-Tukey inverse sine transformation. As the result of analysis of variance, empirical logit transformation turned out a mistake in application but it is possible for graphical analysis by normal probability paper.

  • PDF

Three-Dimensional Grid Generation Method for an Orthogonal Grid at the Boundary by Using Boundary Element Method (경계요소법을 이용한 경계에 직교하는 삼차원 격자형성법)

  • Jeong H. K.;Kwon J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.82-89
    • /
    • 1995
  • In the present paper, a method of nearly orthogonal grid generation in an arbitrary simply-connected 3D domain will be presented. The method is a new direct and non-iterative scheme based on the concept of the decomposition of the global orthogonal transformation into consecutive mapping of a conformal mapping and an auxiliary orthogonal mapping, which was suggested by King and Leal [4]. In our numerical scheme. Kang and Leal's method is extended from 2D problems to 3D problems while the advantage of the non-iterative algorithm is maintained. The essence of the present mapping method is that an iterative scheme can be avoided by introducing a preliminary step. This preliminary step corresponds to a conformal map and is based on the boundary element method(BEM). This scheme is applied to generate several nearly-orthogonal grid systems which are orthogonal at boundaries.

  • PDF