• Title/Summary/Keyword: Orthogonal function

Search Result 471, Processing Time 0.032 seconds

CONTROL THEORY OF WALSH FUNCTIONS-A SURVEY (WALSH함수와 제어이론)

  • Ahn, Doo-Soo;Lee, Myung-Kyu;Lee, Hae-Ki;Lee, Seung
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.657-665
    • /
    • 1991
  • Although orthogonal function is introduced in control theory in early 1970's, it is not perfect. Since the concept of integral operator by Chen and Hsiao in mid 1970's, orthogonal function (for example Walsh, Block-pulse, Haar, Laguerre, Legendre, Chebychev etc) has been widely applied In system's analysis and identification, model reduction, state estimation, optimal control, signal processing, image processing, EEG, and ECG etc. The reason why Walsh Functions introduces in control theory is that as integral of Walsh function is also developed in Walsh orthogonal function, if we transfer give system into integral equation and introduce Walsh function. We can know that system's characteristic by algebraical expression. This approach is based on least square error and that result is expressed as computer calculation and partly continuous constant value which is easy to apply. Such a Walsh function has been actively studied in USA, TAIWAN, INDO, CHINA, EUROPE etc and in domestic, author has studied it for 10 years since it was is introduced in 1982. This paper is consider the that author has studied for 10 years and Walsh function's efficiency.

  • PDF

A Variability Description Technique for Software Product Line: OVDL (소프트웨어 프로덕트라인 가변성 기술 기법: OVDL)

  • Lee, Ji Hyun;Kang, Sung Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.739-746
    • /
    • 2013
  • Variability of the software product line that differentiates member products within a product line must be described with precise meaning and visualized so as easy to select. Moreover, it should be easy to manage. Variability description approaches can largely be divided into two approaches, integrated variability description approach and orthogonal variability description approach. Orthogonal Variability Description Language (OVDL) was developed for clear and precise description of variability without ambiguity. This paper validates the variability description capability of OVDL by translating the variability models of Inter-Working Function (IWF) product line described by using Orthogonal Variability Model (OVM) notations into variability descriptions in OVDL.

Shape Optimization Design of the Knuckle using the Orthogonal Array and the Finite Element Analysis (직교배열표와 유한요소해석을 이용한 너클의 형상최적설계)

  • 박영철;이권희;이동화;이강영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.138-144
    • /
    • 2003
  • Recently, the weight reduction of vehicle influences its environment problems and performances. It is a trend that a lot of parts have been currently changed to an aluminum alloy from steel materials. In this study, the shape optimization using an orthogonal array is performed to determine the design of the knuckle which is a part of suspension system. With the material of the weight reduction was achieved by satisfying the constraints of a strength requirement. The orthogonal array of $L_{18}$ is introduced to find the optimum design variables that considers the shape of the knuckle. The characteristic function composed of the objective and the construct is defined to the feasibility. Comparing to the weight of the initial design with steel materials that of optimum design with aluminum alloy material is reduced by 60%.

The Size Optimization Design of Crane using the Table of Orthogonal Array and Finite Element Analysis (직교배열표와 유한요소해석을 이용한 크레인의 치수최적설계)

  • 홍도관;최석창;안찬우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1471-1474
    • /
    • 2003
  • The correlation between the object function and the design parameter is shown on this paper by using the characteristic function for tile mixed result of the structure analysis. tile buckling analysis and the table of orthogonal array according to the original crane's dimensional change. About the above two object functions, the effective of design change according to the change of design parameters could be estimated. Also, the crane's weight is reduced up to 20.58 percent maintaining the structural stability according to the thickness of plate.

  • PDF

EVALUATION OF INTEGRAL FORMULAS ASSOCIATED WITH THE PRODUCT OF GENERALIZED BESSEL FUNCTION WITH ORTHOGONAL POLYNOMIALS

  • Khan, Nabiullah;Nadeem, Raghib;Usman, Talha;Khan, Abdul Hakim
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.135-152
    • /
    • 2019
  • In the last decades, various integral formulas associated with Bessel functions of different kinds as well as Bessel functions themselves, have been studied and a noteworthy amount of work can be found in the literature. Following up, we present two definite integral formulas involving the product of generalized Bessel function associated with orthogonal polynomials. Also, some intriguing special cases of our main results have been discussed.

Prediction of Radiative Heat Transfer in a Three-Dimensional Gas Turbine Combustor with the Finite-Volume Method (유한체적법에 의한 복잡한 형상을 갖는 3차원 가스터빈 연속기내의 복사열 전달 해석)

  • Kim, Man-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2681-2692
    • /
    • 1996
  • The finite-volume method for radiation in a three-dimensional non-orthogonal gas turbine combustion chamber with absorbing, emitting and anisotropically scattering medium is presented. The governing radiative transfer equation and its discretization equation using the step scheme are examined, while geometric relations which transform the Cartesian coordinate to a general body-fitted coordinate are provided to close the finite-volume formulation. The scattering phase function is modeled by a Legendre polynomial series. After a benchmark solution for three-dimensional rectangular combustor is obtained to validate the present formulation, a problem in three-dimensional non-orthogonal gas turbine combustor is investigated by changing such parameters as scattering albedo, scattering phase function and optical thickness. Heat flux in case of isotropic scattering is the same as that of non-scattering with specified heat generation in the medium. Forward scattering is found to produce higher radiative heat flux at hot and cold wall than backward scattering and optical thickness is also shown to play an important role in the problem. Results show that finite-volume method for radiation works well in orthogonal and non-orthogonal systems.

Simultaneous Multiple Transmit Focusing Using Orthogonal Weighted Linear FM Chirp (가중된 직교 선형 FM신호를 이용한 송신 동시 다중 빔집속 기반의 초음파 영상 기법)

  • 정영관;송태경
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.155-158
    • /
    • 2001
  • A new method for simultaneous multiple transmit focusing using orthogonal weighted FM chirp is proposed. Weighted chirp signals focused at different depths are transmitted at the same time. These chirp signals are mutually orthogonal in the approximate sense that the autocorrelation function of each signal has a narrow mainlobe width and low sidelobe levels, and the crosscorrellation function of any pair of the signals has smaller values than the sidelobe levels of each autocorrelation function. This means that each weighted chirp signal can be separately compressed into a short pulse, focused individually and combined with other focused beams to form a frame of image. Theoretically, any two chirp signals defined in two nonoverlapped frequency bands are mutually orthogonal. In the present work, however, a fractional overlap of adjacent frequency bands, by up to 25%, were permitted to design more chirp signals within a given transducer bandwidth. The crosscorrelation values due to the frequency overlap could be reduced by alternating the direction of frequency sweep of the adjacent chirp signals. The simulation results show that this method can improve the lateral resolution of image without sacrifice in the frame rate compared with the conventional pulse system.

  • PDF

Evaluation on Structure Design Sensitivity and Meta-modeling of Passive Type DSF for Offshore Plant Float-over Installation Based on Orthogonal Array Experimental Method (직교배열실험 방법 기반 해양플랜트 플로트오버 설치 공법용 수동형 DSF의 구조설계 민감도와 메타모델링 평가)

  • Lee, Dong-Jun;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.85-95
    • /
    • 2021
  • Structure design sensitivity was evaluated using the orthogonal array experimental method for passive-type deck support frame (DSF) developed for float-over installation of the offshore plant. Moreover, approximation characteristics were also reviewed based on various meta-models. The minimum weight design of the DSF is significantly important for securing both maneuvering performance and buoyancy of a ship equipped with the DSF and guaranteeing structural design safety. The performance strength of the passive type DSF was evaluated through structure analysis based on the finite element method. The thickness of main structure members was applied to design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experimental method and analysis of variance. The optimum design case was also identified from the orthogonal array experiment results. Various meta-models, such as Chebyshev orthogonal polynomial, Kriging, response surface method, and radial basis function-based neural network, were generated from the orthogonal array experiment results. The results of the orthogonal array experiment were validated using the meta-modeling results. It was found that the radial basis function-based neural network among the meta-models could approximate the design space of the passive type DSF with the highest accuracy.

The Study of Neural Networks Using Orthogonal Function System (직교함수를 사용한 신경회로망에 대한 연구)

  • 권성훈;최용준;이정훈;손동설;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.214-217
    • /
    • 1999
  • In this paper we proposed a heterogeneous hidden layer consisting of both sigmoid functions and RBFs(Radial Basis Function) in multi-layered neural networks. Focusing on the orthogonal relationship between the sigmoid function and its derivative, a derived RBF that is a derivative of the sigmoid function is used as the RBF in the neural network. so the proposed neural network is called ONN's feasibility Neural Network). Identification results using a nonlinear. function confirm both the ONN's feasibility and characteristics by comparing with those obtained using a conventional neural network which has sigmoid function or RBF in hidden layer.

  • PDF