• Title/Summary/Keyword: Orthogonal experiment

Search Result 234, Processing Time 0.025 seconds

Kinematic Parameter Optimization of Jumping Robot Using Energy Conversion of Elastic Body (탄성체의 에너지 변환을 이용한 점프 로봇의 기구변수 최적화)

  • Choi, JaeNeung;Lee, Sangho;Jeong, Kyungmin;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • Various jumping robot platforms have been developed to carry out missions such as rescues, explorations, or inspections of dangerous environments. We suggested a jumping robot platform using energy conversion of the elastic body like the bar of a pole vault, which is the main part in which elastic force occurs. The compliant link was optimized by an optimization method based on Taguchi methodology, and the robot's leaping ability was improved. Among the parameters, the length, width, and thickness of the link were selected as design variables first while the others were fixed. The level of the design variables was settled, and an orthogonal array about its combination was made. In the experiment, dynamic simulations were conducted using the DAFUL program, and response table and sensitivity analyses were performed. We found optimized values through a level average analysis and sensitivity analysis. As a result, the maximum leaping height of the optimized robot increased by more than 6.2% compared to the initial one, and these data will be used to design a new robot.

Optimal Cutting Condition of Tool Life in the High Speed Machining by Taguchi Design of Experiments (다구찌 실험 계획법을 이용한 고속가공에서 공구수명 조건의 최적화)

  • Lim, Pyo;Yang, Gyun-Eui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.59-64
    • /
    • 2006
  • High Speed Machining(HSM) reduces machining time and improves surface accuracy because of the high cutting speed and feedrate. Development of HSM makes it allowable to machine difficult-to-cut material and use small-size-endmill. It is however limited to cutting condition and tool material. In the machining operation, it is important to check main parameter of tool life and select optimal cutting condition because tool breakage can interrupt progression of operation. In this study, cutting parameters are determined to 3 factors and 3 levels which are a spindle speed, a feedrate and a width of cut. Experiment is designed to orthogonal array table for L9 with 3 outer array using Taguchi method. Also, it is proposed to inspect significance of the optimal factors and levels by ANOVA using average of SN ratio for tool life. Finally, estimated value of SN ratio in the optimal cutting condition is compared with measured one in the floor shop and reduction of loss is predicted.

  • PDF

Dynamic analysis and model test on steel-concrete composite beams under moving loads

  • Hou, Zhongming;Xia, He;Wang, Yuanqing;Zhang, Yanling;Zhang, Tianshen
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.565-582
    • /
    • 2015
  • This paper is concerned with the dynamic analysis of simply-supported steel-concrete composite beams under moving loads. Considering the interface slip between steel girder and concrete slab, the governing motion equations are derived from the direct balanced method. By variable separation approach, the analytical solution of natural frequencies and mode shapes are obtained, as well as the orthogonal conditions. Then the dynamic responses of the composite beam under moving loads are analyzed, and compared with the experimental results. The analysis results show that the governing motion equations become more complicated when interface slip is taken into account, and the dynamic behaviors are significantly influenced by the shear connection stiffness. In the dynamic calculation of composite beams, the global stiffness should not be reduced as the same factor to all orders, but as different ones according to the dynamic stiffness reduction factor (DSRF), to which should be paid more attention in calculation, design and experiment, or else great deviation is inevitable.

Robust Design of Pantograph Panhead Sections Considering Aerodynamic Stability and Noise (유동안정성 및 유동소음을 고려한 판토그라프 팬헤드 단면의 강건설계)

  • 조운기;이종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1235-1241
    • /
    • 2001
  • Pantograph design process must be considered in terms of stability of aerodynamics and reduction of aeroacoustics. Furthermore Pantograph needs to be insensible to severe circumstance condition like typhoon, tunnel, a change of season. In this paper, robust design of panhead sections is conducted based on the Taguchi's design of experiment method. In the aeroacoustic noise analysis, an acoustic analogy using the Ffowcs Williams and Hawkings (FW-H) equation is used to calculate the flow induced sound pressure level. From the near-field CFD analysis data, the far-field noise is predicted at the positions of 25m away from panhead contact strips. Based on aerodynamic (CFD) and aeroacoustic (FW-H) analysis data, the optimal sizing and positioning ofpanhead elements are determined using robust design optimization method. Design parameters such as thickness, length and radius are controllable factors, while outdoor air temperature and atmospheric pressure are considered as uncontrollable factors in the context of Taguchi's approach. A number of CFD simulation and aeroacoustic analysis are performed based on orthogonal arrays. Using a parameter design procedure associated with signal-to-noise (SIN) ratio and sensitivity analysis, an optimal level of design parameters are extracted to minimize the disconnection ratio between contact strips and catenary system, and reduce the far-field aeroacoustic noise.

  • PDF

Optimization of DL-EPR Test Solution for Duplex Stainless Steel S31083 Using Taguchi Design (다구찌 설계를 이용한 듀플렉스 스테인리스강 S31083용 DL-EPR 시험용액의 최적화)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.77-84
    • /
    • 2021
  • This study aims to optimize the DL-EPR test solution for duplex stainless steel S31083 using the Taguchi design. The test solution parameters applied to the Taguchi design are H2SO4, NaCl, KSCN concentration, and temperature. In the experimental design, an orthogonal array of 4 levels 4 factor L16(44) was used. Output values for the orthogonal array were used for resolution (degree of sensitization) and selective etch (Ia) values. The optimal test solution conditions were selected by comparing the normalized S/N ratio for the two reaction properties. As a result, the H2SO4 and NaCl were identified as the main factors influencing the sensitivity measurement, but the delta statistics showed that the KSCN concentration and temperature had relatively low influence. The optimal condition was identified as 1.5 M H2SO4+0.03 M KSCN+1.5M NaCl at 30 ℃. The degree of sensitization presented a tendency to depend on the heat treatment temperature and time in the optimal test solution. This investigation confirmed the possibility of optimizing the experiment solution for the DL-EPR test of stainless steel using the Taguchi technique.

Development of a precision machining process for the outer cylinder of vacuum roll for film transfer (실험계획법을 통한 3.5인치 도광판의 두께 편차 최적화에 대한 연구)

  • Hyo-Eun Lee;Jong-Sun Kim
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.41-50
    • /
    • 2024
  • In this study, experimental design methods were used to derive optimal process conditions for improving the thickness uniformity of a 0.40 mm, 3.5 inch light guide panel. Process mapping and expert group analysis were used to identify factors that influence the thickness of injection molded products. The key factors identified were mold temperature, mold temperature, injection speed, packing pressure, packing time, clamp force, and flash time. Considering the resin manufacturer's recommended process conditions and the process conditions for similar light guide plates, a three-level range was selected for the identified influencing factors. L27 orthogonal array process conditions were generated using the Taguchi method. Injection molding was performed using these L27 orthogonal array to mold the 3.5 inch light guide plates. Thickness measurements were then taken, and the results were analyzed using the signal-to-noise ratio to maximize the CpK value, leading to the determination of the optimal process conditions. The thickness uniformity of the product was analyzed by applying the derived optimum process conditions. The results showed a 97.5% improvement in the Cpk value of 3.22 compared to the process conditions used for similar light guide plates.

Enhanced data-driven simulation of non-stationary winds using DPOD based coherence matrix decomposition

  • Liyuan Cao;Jiahao Lu;Chunxiang Li
    • Wind and Structures
    • /
    • v.39 no.2
    • /
    • pp.125-140
    • /
    • 2024
  • The simulation of non-stationary wind velocity is particularly crucial for the wind resistant design of slender structures. Recently, some data-driven simulation methods have received much attention due to their straightforwardness. However, as the number of simulation points increases, it will face efficiency issues. Under such a background, in this paper, a time-varying coherence matrix decomposition method based on Diagonal Proper Orthogonal Decomposition (DPOD) interpolation is proposed for the data-driven simulation of non-stationary wind velocity based on S-transform (ST). Its core idea is to use coherence matrix decomposition instead of the decomposition of the measured time-frequency power spectrum matrix based on ST. The decomposition result of the time-varying coherence matrix is relatively smooth, so DPOD interpolation can be introduced to accelerate its decomposition, and the DPOD interpolation technology is extended to the simulation based on measured wind velocity. The numerical experiment has shown that the reconstruction results of coherence matrix interpolation are consistent with the target values, and the interpolation calculation efficiency is higher than that of the coherence matrix time-frequency interpolation method and the coherence matrix POD interpolation method. Compared to existing data-driven simulation methods, it addresses the efficiency issue in simulations where the number of Cholesky decompositions increases with the increase of simulation points, significantly enhancing the efficiency of simulating multivariate non-stationary wind velocities. Meanwhile, the simulation data preserved the time-frequency characteristics of the measured wind velocity well.

Structure Design Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Design of Experiments (실험계획법을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 구조설계 민감도 해석)

  • Kim, Hun-Gwan;Song, Chang Yong;Lee, Kangsu
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.98-106
    • /
    • 2021
  • The paper deals with comparative study on sensitivity analysis using various methods regarding to design of experiments for structure design of an active type DSF (Deck support frame) that was developed for float-over installation of offshore plant. The thickness sizing variables of structure member of the active type DSF were considered the design factors. The output responses were defined from the weight and the strength performances. Various methods such as orthogonal array design, Box-Behnken design, and Latin hypercube design were applied to the comparative study. In order to evaluate the approximation performance of the design space exploration according to the design of experiments, response surface method was generated for each design of experiment, and the accuracy characteristics of the approximation were reviewed. The design enhancement results such as numerical costs, weight minimization, etc. via the design of experiment methods were compared to the results of the best design. The orthogonal array design method represented the most improved results for the structure design of the active type DSF.

Optimal design of a micro evaporator to maximize heat transfer coefficient (열전달 계수 최대화를 위한 마이크로 증발기의 최적 설계)

  • Sung, Tai-Jong;Oh, Dae-Sik;Seo, Tae-Won;Kim, Jong-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2097-2101
    • /
    • 2007
  • This paper presents an optimal design of a micro evaporator which maximizes the heat transfer coefficient. Number of gaps, spanwise distance and streamwise distance are selected as the geometric design parameters. Mass flow rate of the refrigerant is selected as the non-geometric design parameter. Temperature at the surface of the heater is measured to valuate the heat transfer coefficient. Nine experiments are conducted using $L_9(3^4)$ orthogonal array. Maximum heat transfer coefficient is 640 W/$m^2K$ at the parameters of 2 gaps, 0.2 mm spanwise distance, 1.0 mm streamwise distance and 0.72 g/s mass flow rate. Among the 3 geometric parameters, the spanwise distance is the most sensitive parameter influencing the heat transfer coefficient. We conduct a second stage of experiment to increase the heat transfer coefficient by reselecting the mass flow rate. We concluded that 0.87 g/s is the optimized flow rate for an active micro cooler resulting in a heat transfer coefficient of 651 W/$m^2K$.

  • PDF

Psychophysical Stess Depending on Repetition of Wrist Motion and External Load (손목 동작의 반복과 외부 부하에 따른 심물리학적 부하)

  • Kee, Do-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.123-128
    • /
    • 2004
  • This study investigated effect of arm posture, repetition of wrist motion and external load on perceived discomfort. The arm postures were controlled by shoulder flexion, elbow flexion, and ist motions such as flexion, extension, radial deviation and ulnar deviation. An experiment was conducted to measure discomfort scores for experimental treatments using the magnitude estimation, in which the L16 orthogonal array was adopted for reducing the size of experiment. The results showed that while the effect of the shoulder flexion, repetition of wrist motion and external load was statistically significant at $\alpha=0.05$or 0.10, that of the elbow and wrist motions was not. Discomfor ratings increased linearly as levels of wrist repetition and external load increased. This implies that the existing posture classification schemes such as OWAS, RULA, which do not properly consider effect of motion repetition and external load, may underestimate postural load. Based on the regression equation for wrist repetition and external load, isocomfort region indicating the region within which discomfort scores were expected to be the same was proposed. It is recommended that when assessing risk of postures or developing new posture classification schemes, motion repetition and external load as well as posture itself be fully taken into consideration for precisely evaluating postural stress.