• Title/Summary/Keyword: Orthogonal distance

Search Result 149, Processing Time 0.023 seconds

A comparative study between the new model and the current model for T-shaped combined footings

  • Garay-Gallegos, Jesus Rafael;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Aguilera-Mancilla, Gabriel;Garcia-Canales, Edith
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.525-538
    • /
    • 2022
  • This paper presents a more general model for T-shaped combined footings that support two columns aligned on a longitudinal axis and each column provides an axial load and two orthogonal moments. This model can be applied to the following conditions: (1) without restrictions on its sides, (2) a restricted side and (3) two opposite sides restricted. This model considers the linear soil pressure. The recently published works have been developed for a restricted side and for two opposite sides restricted by Luévanos-Rojas et al. (2018a, b). The current model considers the uniform pressure distribution because the position of the resultant force coincides with the center of gravity of the surface of the footing in contact with the soil in direction of the longitudinal axis where the columns are located. This paper shows three numerical examples. Example 1 is for a T-shaped combined footing with a limited side (one column is located on the property boundary). Example 2 is for a T-shaped combined footing with two limited opposite sides (the two columns are located on the property boundary). Example 3 is for a T-shaped combined footing with two limited opposite sides, one column is located in the center of the width of the upper flange (b1/2=L1), and other column is located at a distance half the width of the strip from the free end of the footing (b2/2=b-L1-L). The main advantage of this work over other works is that this model can be applied to T-shaped combined footings without restrictions on its sides, a restricted side and two opposite sides restricted. It also shows the deficiencies of the current model over the new model.

Factors Affecting Cage Obliquity and the Relationship between Cage Obliquity and Radiological Outcomes in Oblique Lateral Interbody Fusion at the L4-L5 Level

  • CheolWon Jang;SungHwan Hwang;Tae Kyung Jin;Hyung Jin Shin;Byung-Kyu Cho
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.703-715
    • /
    • 2023
  • Objective : This retrospective study investigated the factors that affect cage obliquity angle despite orthogonal maneuvers performed during oblique lateral interbody fusion (OLIF) and assessed the relationship between cage obliquity angle and radiological outcomes post-surgery. Methods : Twenty-nine males who underwent L4-L5 OLIF for lumbar degenerative disease between 2019 and 2021 with a followup duration greater than 12 months were analyzed. Radiological parameters were measured including psoas muscle volume, total psoas area index (total psoas muscle area [cm2]/height squared [m2]), distance from the iliac artery to the origin of the psoas muscle (DIAPM), angle between the origin of the psoas muscle and the center of the vertebral disc (APCVD), iliac crest height, disc height, lumbar flexibility (lumbar flexion angle minus extension angle), cage location ratio, cage-induced segmental lumbar lordosis (LL) (postoperative index level segmental LL minus used cage angle), foraminal height changes, fusion grade. Results : DIAPM, APCVD, iliac crest height, postoperative index level segmental LL, and cage-induced segmental LL were significantly correlated with OLIF cage obliquity angle. However, other radiological parameters did not correlate with cage obliquity. Based on multiple regression analysis, the predictive equation for the OLIF cage obliquity angle was 13.062-0.318×DIAPM+0.325×1APCVD+0.174×iliac crest height. The greater the cage obliquity, the smaller the segmental LL compared to the cage angle used. Conclusion : At the L4-L5 level, OLIF cage obliquity was affected by DIAPM, APCVD, and iliac crest height, and as the cage obliquity angle increases, LL agnle achievable by the used cage could not be obtained.

Fatigue Life Optimization of Spot Welding Nuggets Considering Vibration Mode of Vehicle Subframe (서브프레임의 진동모드를 고려한 점용접 너깃의 피로수명 최적설계)

  • Lee, Sang-Beom;Lee, Hyuk-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.646-652
    • /
    • 2009
  • In this paper, welding pitch optimization technique of vehicle subframe is presented considering the fatigue life of spot welding nuggets. Fatigue life of spot welding nuggets is estimated by using the frequency-domain fatigue analysis technique. The input data, which are used in the fatigue analysis, are obtained by performing the dynamic analysis of vehicle model passing through the Belgian road profile and also the modal frequency response analysis of finite element model of vehicle subframe. According to the fatigue life result obtained from the frequency-domain fatigue analysis, the design points to optimize the weld pitch distance are determined. For obtaining the welding pitch combination to maximize the fatigue life of the spot welding nuggets, 4-factor, 3-level orthogonal array experimental design is used. This study shows that the optimized subframe improves the fatigue life of welding nugget with minimum fatigue life about 65.8 % as compared with the baseline design.

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF

Capacity Comparison of Two Uplink OFDMA Systems Considering Synchronization Error among Multiple Users and Nonlinear Distortion of Amplifiers (사용자간 동기오차와 증폭기의 비선형 왜곡을 동시에 고려한 두 상향링크 OFDMA 기법의 채널용량 비교 분석)

  • Lee, Jin-Hui;Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.258-270
    • /
    • 2014
  • In this paper, we investigate channel capacity of two kinds of uplink OFDMA (Orthogonal Frequency Division Multiple Access) schemes, i.e. ZCZ (Zero Correlation Zone) code time-spread OFDMA and sparse SC-FDMA (Single Carrier Frequency Division Mmultiple Access) robust to access timing offset (TO) among multiple users. In order to reflect the practical condition, we consider not only access TO among multiple users but also peak to average power ratio (PAPR) which is one of hot issues of uplink OFDMA. In the case with access TO among multiple users, the amplified signal of users by power control might affect a severe interference to signals of other users. Meanwhile, amplified signal by considering distance between user and base station might be distorted due to the limit of amplifier and thus the performance might degrade. In order to achieve the maximum channel capacity, we investigate the combinations of transmit power so called ASF (adaptive scaling factor) by numerical simulations. We check that the channel capacity of the case with ASF increases compared to the case with considering only distance i.e. ASF=1. From the simulation results, In the case of high signal to noise ratio (SNR), ZCZ code time-spread OFDMA achieves higher channel capacity compared to sparse block SC-FDMA. On the other hand, in the case of low SNR, the sparse block SC-FDMA achieves better performance compared to ZCZ time-spread OFDMA.

Dose Verification Using Pelvic Phantom in High Dose Rate (HDR) Brachytherapy (자궁경부암용 팬톰을 이용한 HDR (High dose rate) 근접치료의 선량 평가)

  • 장지나;허순녕;김회남;윤세철;최보영;이형구;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • High dose rate (HDR) brachytherapy for treating a cervix carcinoma has become popular, because it eliminates many of the problems associated with conventional brachytherapy. In order to improve the clinical effectiveness with HDR brachytherapy, a dose calculation algorithm, optimization procedures, and image registrations need to be verified by comparing the dose distributions from a planning computer and those from a phantom. In this study, the phantom was fabricated in order to verify the absolute doses and the relative dose distributions. The measured doses from the phantom were then compared with the treatment planning system for the dose verification. The phantom needs to be designed such that the dose distributions can be quantitatively evaluated by utilizing the dosimeters with a high spatial resolution. Therefore, the small size of the thermoluminescent dosimeter (TLD) chips with a dimension of <1/8"and film dosimetry with a spatial resolution of <1mm used to measure the radiation dosages in the phantom. The phantom called a pelvic phantom was made from water and the tissue-equivalent acrylic plates. In order to firmly hold the HDR applicators in the water phantom, the applicators were inserted into the grooves of the applicator holder. The dose distributions around the applicators, such as Point A and B, were measured by placing a series of TLD chips (TLD-to-TLD distance: 5mm) in the three TLD holders, and placing three verification films in the orthogonal planes. This study used a Nucletron Plato treatment planning system and a Microselectron Ir-192 source unit. The results showed good agreement between the treatment plan and measurement. The comparisons of the absolute dose showed agreement within $\pm$4.0 % of the dose at point A and B, and the bladder and rectum point. In addition, the relative dose distributions by film dosimetry and those calculated by the planning computer show good agreement. This pelvic phantom could be a useful to verify the dose calculation algorithm and the accuracy of the image localization algorithm in the high dose rate (HDR) planning computer. The dose verification with film dosimetry and TLD as quality assurance (QA) tools are currently being undertaken in the Catholic University, Seoul, Korea.

  • PDF

The Hybrid Method of ToA and TDoA Using MHP Pulse in UWB System (UWB 시스템에서의 MHP 펄스를 이용한 ToA와 TDoA의 Hybrid 방식)

  • Hwang, Dae-Geun;Hwang, Jae-Ho;Kim, Jae-Moung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.49-59
    • /
    • 2011
  • Recently, ToA and TDoA estimation are favorable among all of estimation techniques because they have the best accuracy in estimating position. ToA and TDoA estimation are typical techniques based on time. So, it is important to have the time syncronization and offset between a target node and several reference nodes. If they don't have the time syncronization between a reference node and target node or have a time offset among reference nodes, the positioning error will increase due to the ranging error. The conventional positioning algorithm does not have a accurate device's position because ranging error is added the calc dation of the position. In this paper, we propose a hybrid method of ToA and TDoA ll increase due. We use MHP pulse that has orthogonal pulse instead of the existing pulse to transmit and receive pulses between a target node and reference nodes. We can estimate the target node's position by ToA and TDoA estimation to transmit and receive MHP pulses only once. When the proposed Hybrid method iteratively calculate the distance, we can select the ranging technique to have more accurate position. The simulation results confirm the enhancement of the Hybrid method.

Effect of Compaction Method on Induced Earth Pressure Using Dynamic Compaction Roller (진동롤러에 의한 다짐방법이 인접구조물의 다짐토압에 미치는 영향)

  • Roh, Han-Sung
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.127-136
    • /
    • 2001
  • To increase the structural integrity of concrete box culvert good compaction by the dynamic compaction roller with bi9 capacity is as effective as good backfill materials. It is needed for effective compaction that a compaction roller closes to concrete structure with high frequency. However structural distress of the culvert could be occur due to the excessive earth pressure by great dynamic compaction load. To investigate the characteristics of Induced stress by compaction, a box culvert was constructed with changing cushion materials and compaction methods. Two types of cushion material such as tire rubber chip and EPS(Expanded Polystyrene) were used as cushion panels and they are set on the culverts before backfill construction. Laboratory test result of cushion material says that the value of dynamic elastic modulus of rubber is lesser than that of EPS. On the other hand, material damping of rubber material is greater than that of EPS. In most case, dynamic compaction rollers with 10.5 ton weights were used and vibration frequency was applied 30Hz for the great compaction energy. This paper presents the main results on the characteristics of dynamic earth pressures during compaction. The amounts of induced dynamic pressures$(\Delta\sigma\;h)$ by compaction are affected with construction condition such as compaction frequency, depth of pressure cell, distance between roller and the wall of culvert and roller direction. Based on the measured values dynamic lateral pressure on the culverts, it could be said that orthogonal direction of roller to the length of culvert is more effective to compaction efficiency than parallel direction.

  • PDF

Shear Resistance of Unreinforced Cast-In-Place Anchors in Uncracked and Cracked Concrete by Seismic Qualification Tests (지진모의실험에 의한 비균열 및 균열콘크리트에 매입된 비보강 선설치앵커의 전단 저항강도 평가)

  • Park, Yong Myung;Kim, Tae Hyung;Kim, Dong Hyun;Jo, Sung Hoon;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.347-357
    • /
    • 2015
  • In this study, an experimental study was performed to evaluate the concrete breakout strength of unreinforced cast-in-place anchors by seismic qualification test under shear loading. The CIP anchors tested herein were 30mm in diameter with an edge distance of 150mm and an embedment depth of 240mm in uncracked and cracked concrete. The cracked specimen consisted of orthogonal and parallel crack to the loading direction, respectively. The dynamic loading sequence during the seismic qualification test was determined based on CSA N287.2, ACI 355.2 and ETAG 001 codes. After the dynamic loading, the static loading was applied until failure occurs. The shear resistance by seismic qualification tests showed almost the same strength as that obtained from the static tests in uncrcaked and cracked concrete, respectively. Meanwhile, the breakout depth did not reach $8d_0$, therefore the modified strength equation of ACI 318-11 could estimate properly the concrete breakout strength, which does not consider effective bearing length.

An Advanced MCL Method for a Sharing Analysis of Mobile Communication Systems beyond 3G (차세대 이동통신 시스템의 주파수 공유분석을 위한 개선된 MCL 방법)

  • Chung Woo-Ghee;Yoon Hyun-Goo;Jo Han-Shin;Lim Jae-Woo;Yook Jong-Gwan;Park Han-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.307-316
    • /
    • 2006
  • In this paper the analytical method, namely advanced minimum coupling loss(A-MCL), was proposed in order to analyze the coexistence of OFDM-based systems beyond 3G(B3G) with point-to point(PP) fixed service(FS) microwave systems. Our proposed method is based on a power spectral density(PSD) analysis. So it can be easily applicable to analyze the coexistence of OFDM-based systems B3G using flexible spectrum usage(FSU) with other systems, where the conventional MCL method cannot allocate transmit power partially to some subcarriers which overlap the band of a victim system. By applying the conventional MCL method and the A-MCL method, interfering power levels at the receiver of a interfered system are respectively calculated. A-MCL can calculate interference power more accurately than MCL by the maximum value of 4.5 dB. Therefore it can be concluded that our prosed method, namely A-MCL, is applicable to a sharing analysis of OFDM-based systems B3G.