• Title/Summary/Keyword: Orthogonal beam

Search Result 129, Processing Time 0.023 seconds

The Study on New Radiating Structure with Multi-Layered Two-Dimensional Metallic Disk Array for Shaping flat-Topped Element Pattern (구형 빔 패턴 형성을 위한 다층 이차원 원형 도체 배열을 갖는 새로운 방사 구조에 대한 연구)

  • 엄순영;스코벨레프;전순익;최재익;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.667-678
    • /
    • 2002
  • In this paper, a new radiating structure with a multi-layered two-dimensional metallic disk array was proposed for shaping the flat-topped element pattern. It is an infinite periodic planar array structure with metallic disks finitely stacked above the radiating circular waveguide apertures. The theoretical analysis was in detail performed using rigid full-wave analysis, and was based on modal representations for the fields in the partial regions of the array structure and for the currents on the metallic disks. The final system of linear algebraic equations was derived using the orthogonal property of vector wave functions, mode-matching method, boundary conditions and Galerkin's method, and also their unknown modal coefficients needed for calculation of the array characteristics were determined by Gauss elimination method. The application of the algorithm was demonstrated in an array design for shaping the flat-topped element patterns of $\pm$20$^{\circ}$ beam width in Ka-band. The optimal design parameters normalized by a wavelength for general applications are presented, which are obtained through optimization process on the basis of simulation and design experience. A Ka-band experimental breadboard with symmetric nineteen elements was fabricated to compare simulation results with experimental results. The metallic disks array structure stacked above the radiating circular waveguide apertures was realized using ion-beam deposition method on thin polymer films. It was shown that the calculated and measured element patterns of the breadboard were in very close agreement within the beam scanning range. The result analysis for side lobe and grating lobe was done, and also a blindness phenomenon was discussed, which may cause by multi-layered metallic disk structure at the broadside. Input VSWR of the breadboard was less than 1.14, and its gains measured at 29.0 GHz. 29.5 GHz and 30 GHz were 10.2 dB, 10.0 dB and 10.7 dB, respectively. The experimental and simulation results showed that the proposed multi-layered metallic disk array structure could shape the efficient flat-topped element pattern.

Evaluation of Geometric Correspondence of kV X-ray Images, Electric Portal Images and Digitally Reconstructed Radiographic Images (kV X선 영상, 전자조사문 영상, 디지털화재구성 영상 간 기하학적 일치성 평가)

  • Cheong, Kwang-Ho;Kim, Kyoung-Joo;Cho, Byung-Chul;Kang, Sei-Kwon;Juh, Ra-Hyeong;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.118-125
    • /
    • 2007
  • In this study we estimated a geometric correlation among digitally reconstructed radiographic image (DRRI), kV x-ray image (kVXI) from the On-Board Imager (OBI) and electric portal image (EPI). To verify geometric correspondence of DRRI, kVXI and EPI, specially designed phantom with indexed 6 ball bearings (BBs) were employed. After accurate setup of the phantom on a treatment couch using orthogonal EPIs, we acquired set of orthogonal kVXIs and EPIs then compared the absolute positions of the center of the BBs calculated at each phantom plane for kVXI and EPI respectively. We also checked matching result for obliquely incident beam (gantry angle of $315^{\circ}$) after 2D-2D matching provided by OBI application. A reference EPI obtained after initial setup of the phantom was compared with 10 series of EPIs acquired after each 2D-2D matching. Imaginary setup errors were generated from -5 mm to 5 mm at each couch motion direction. Calculated positions of all center positions of the BBs at three different images were agreed with the actual points within a millimeter and each other. Calculated center positions of the BBs from the reference and obtained EPIs after 2D-2D matching agreed within a millimeter. We could tentatively conclude that the OBI system was mechanically quite reliable for image guided radiation therapy (IGRT) purpose.

  • PDF

Evaluation of Set-up Accuracy for Frame-based and Frameless Lung Stereotactic Body Radiation Therapy (폐암 정위체부방사선치료 시 고정기구(frame) 사용 유무에 따른 셋업 정확성 평가)

  • Ji, Yunseo;Chang, Kyung Hwan;Cho, Byungchul;Kwak, Jungwon;Song, Si Yeol;Choi, Eun Kyung;Lee, Sang-wook
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.286-293
    • /
    • 2015
  • The purpose of this study was to evaluate the set up accuracy using stereotactic body frame and frameless immobilizer for lung stereotactic body radiation therapy (SBRT). For total 40 lung cancer patients treated by SBRT, 20 patients using stereotactic body frame and other 20 patients using frameless immobilizer were separately enrolled in each group. The setup errors of each group depending on the immobilization methods were compared and analyzed. All patients received the dose of 48~60 Gy for 4 or 5 fractions. Before each treatment, a patient was first localized to the treatment isocenter using room lasers, and further aligned with a series of image guidance procedures; orthogonal kV radiographs, cone-beam CT, orthogonal fluoroscopy. The couch shifts during these procedures were recorded and analyzed for systematic and random errors of each group. Student t-test was performed to evaluate significant difference depending on the immobilization methods. The setup reproducibility was further analyzed using F-test with the random errors excluding the systematic setup errors. In addition, the ITV-PTV margin for each group was calculated. The setup errors for SBF were $0.05{\pm}0.25cm$ in vertical direction, $0.20{\pm}0.38cm$ in longitudinal direction, and $0.02{\pm}0.30cm$ in lateral direction, respectively. However the setup errors for frameless immobilizer showed a significant increase of $-0.24{\pm}0.25cm$ in vertical direction while similar results of $0.06{\pm}0.34cm$, $-0.02{\pm}0.25cm$ in longitudinal and lateral directions. ITV-PTV margins for SBF were 0.67 cm (vertical), 0.99 cm (longitudinal), and 0.83 cm (lateral), respectively. On the other hand, ITV-PTV margins for Frameless immobilizer were 0.75 cm (vertical), 0.96 cm (longitudinal), and 0.72 cm (lateral), indicating less than 1 mm difference for all directions. In conclusion, stereotactic body frame improves reproducibility of patient setup, resulted in 0.1~0.2 cm in both vertical and longitudinal directions. However the improvements are not substantial in clinic considering the effort and time consumption required for SBF setup.

Application of Modified Mupit for the Recurrent Vulva Cancer in Brachytherapy (재발한 Vulvar 종양의 근접치료 시 Modified Mupit Applicator의 적용)

  • Kim, Jong-Sik;Jung, Chun-Young;Oh, Dong-Gyoon;Song, Ki-Won;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • Purpose: To evaluate whether modified MUPIT applicator can effectively eradicate recurrent tumor in uterine cervix cancer and reduce rectal complication after complete radiation treatment. Materials and Methods: Modified MUPIT applicator basically consists of an acrylic cylinder with flexible brain applicator, an acrylic template with a predrilled array of holes that serve as guides for interstitial needles and interstitial needles. CT scan was peformed to determine tumor volume and the position of interstitial needles. Modified MUPIT applicator was applied to patient in operation room and the accuracy for position of interstitial needles in tumor volume was confirmed by CTscan. Brachytherapy was delivered using modified MUPIT applicator and RALS(192-lr HDR) after calculated computer planning by orthogonal film. The daily dose was 600cGy and the total dose was delivered 3,000 cGy in tumor volume by BID. Rectal dose was measured by TLD at 5 points so that evaluated the risk of rectal complication. Results: The application of modified MUPIT applicator improved dramatically dose distributions in tumor volume and follow-up of 3 month for this patient was clinically partial response without normal tissue complication, Rectal dose was measured 34.1 cGy, 57.1 cGy, 103.8 cGy, 162.7 cGy, 165.7 cGy at each points, especially the rectal dose including previous EBRT and ICR was 34.1 cGy, 57.1 cGy. Conclusion: Patients with locally recurrent tumor in uterine cervix cancel treated with modified MUPIT applicator can expect reasonable rates of local control. The advantages of the system are the fixed geometry provided by the template and cylinders. and improved dose distributions in irregular tumor volume without rectal complication.

  • PDF

Three-Dimensional Processing of Ultrasonic Pulse-Echo Signal (초음파 펄스에코 신호의 3차원 처리)

  • Song, Moon-Ho;Song, Sang-Rock;Cho, Jung-Ho;Sung, Je-Joong;Ahn, Hyung-Keun;Jang, Soon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.464-474
    • /
    • 2003
  • Ultrasonic imaging of 3-D structures for nondestructive evaluation must provide readily recognizable images with enough details to clearly show various flaws that may or may not be present. Typical flaws that need to be detected are miniature cracks, for instance, in metal pipes having aged over years of operation in nuclear power plants; and these sub-millimeter cracks or flaws must be depicted in the final 3-D image for a meaningful evaluation. As a step towards improving conspicuity and thus detection of flaws, we propose a pulse-echo ultrasonic imaging technique to generate various 3-D views of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. We employ a 2-D Wiener filter that filters the pulse-echo data along the plane orthogonal to the beam propagation so that ultrasonic beams can be sharpened. This three-dimensional processing and display coupled with 3-D manipulation capabilities by which users are able to pan and rotate the 3-D structure improve conspicuity of flaws. Providing such manipulation operations allow a clear depiction of the size and the location of various flaws in 3-D.

Feasibility Study of Deep Inspiration Breath-Hold Based Volumetric Modulated Arc Therapy for Locally Advanced Left Sided Breast Cancer Patients

  • Swamy, Shanmugam Thirumalai;Radha, Chandrasekaran Anu;Kathirvel, Murugesan;Arun, Gandhi;Subramanian, Shanmuga
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.9033-9038
    • /
    • 2014
  • Background: The purpose of this study was to assess the feasibility of deep inspiration breath-hold (DIBH) based volumetric modulated arc therapy (VMAT) for locally advanced left sided breast cancer patients undergoing radical mastectomy. DIBH immobilizes the tumor bed providing dosimetric benefits over free breathing (FB). Materials and Methods: Ten left sided post mastectomy patients were immobilized in a supine position with both the arms lifted above the head on a hemi-body vaclock. Two thermoplastic masks were prepared for each patient, one for normal free breathing and a second made with breath-hold to maintain reproducibility. DIBH CT scans were performed in the prospective mode of the Varian real time position management (RPM) system. The planning target volume (PTV) included the left chest wall and supraclavicular nodes and PTV prescription dose was 5000cGy in 25 fractions. DIBH-3DCRT planning was performed with the single iso-centre technique using a 6MV photon beam and the field-in-field technique. VMAT plans for FB and DIBH contained two partial arcs ($179^{\circ}-300^{\circ}CCW/CW$). Dose volume histograms of PTV and OAR's were analyzed for DIBH-VMAT, FB-VMAT and DIBH-3DCRT. In DIBH mode daily orthogonal ($0^{\circ}$ and $90^{\circ}$) KV images were taken to determine the setup variability and weekly twice CBCT to verify gating threshold level reproducibility. Results: DIBH-VMAT reduced the lung and heart dose compared to FB-VMAT, while maintaining similar PTV coverage. The mean heart $V_{30Gy}$ was $2.3%{\pm}2.7$, $5.1%{\pm}3.2$ and $3.3%{\pm}7.2$ and for left lung $V_{20Gy}$ was $18.57%{\pm}2.9$, $21.7%{\pm}3.9$ and $23.5%{\pm}5.1$ for DIBH-VMAT, FB-VMAT and DIBH-3DCRT respectively. Conclusions: DIBH-VMAT significantly reduced the heart and lung dose for left side chest wall patients compared to FB-VMAT. PTV conformity index, homogeneity index, ipsilateral lung dose and heart dose were better for DIBH-VMAT compared to DIBH-3DCRT. However, contralateral lung and breast volumes exposed to low doses were increased with DIBH-VMAT.

Member Sizing Method in IsoTruss® Grid High-rise Building Structures Based on Stiffness Criteria (강성도 기준에 따른 IsoTruss® 그리드 고층건물의 부재선정 방법)

  • Kim, Tae-Heon;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.50-56
    • /
    • 2017
  • The perimeter structure in high-rise buildings, which plays a major role in resisting lateral forces, is generally formed by the orthogonal placement of the beam and column, but currently various grid patterns are implemented. In a previous study, the adaptability of the $IsoTruss^{(R)}$ grid (ITG) as a perimeter structure was examined. In this study, a method of estimating the required cross sectional area of a member in a preliminary design is proposed. The members of the perimeter structure are placed in three planes, perpendicular (PPR), parallel (PPL) and oblique (POQ) to the lateral loading, and the stiffness of the members in the POQ was taken into account by projecting them onto the PPL or PPR. Three models are established for member size zoning through the height of the building, in order to investigate the effect of the shear and moment in the calculation of the required cross sectional area. To examine the effectiveness of this study, a 64-story building is designed and analyzed. The effect of the member size zoning was examined by comparing the maximum lateral displacement, required steel amount, and axial strength ratio of the columns. Judging from the maximum lateral displacement, which was 97.3% of the allowable limit, the proposed formula seems to be implemental in sizing the members of an ITG structure at the initial stage of member selection.

High-resolution range and velocity estimation method based on generalized sinusoidal frequency modulation for high-speed underwater vehicle detection (고속 수중운동체 탐지를 위한 일반화된 사인파 주파수 변조 기반 고해상도 거리 및 속도 추정 기법)

  • Jinuk Park;Geunhwan Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.320-328
    • /
    • 2023
  • Underwater active target detection is vital for defense systems, requiring accurate detection and estimation of distance and velocity. Sequential transmission is necessary at each beam angle, but divided pulse length leads to range ambiguity. Multi-frequency transmission results in time-bandwidth product losses when bandwidth is divided. To overcome these problem, we propose a novel method using Generalized Sinusoidal Frequency Modulation (GSFM) for rapid target detection, enabling low-correlation pulses between subpulses without bandwidth division. The proposed method allows for rapid updates of the distance and velocity of target by employing GSFM with minimized pulse length. To evaluate our method, we simulated an underwater environment with reverberation. In the simulation, a linear frequency modulation of 0.05 s caused an average distance estimation error of 50 % and a velocity estimation error of 103 % due to limited frequency band. In contrast, GSFM accurately and quickly tracked targets with distance and velocity estimation errors of 10 % and 14 %, respectively, even with pulses of the same length. Furthermore, GSFM provided approximate azimuth information by transmitting highly orthogonal subpulses for each azimuth.

Reproducibility of Applicator Position with High dose rate brachytherapy in uterine cervical cancer (자궁경부암 환자의 근접치료시 재현성 평가)

  • Kim Jong-Hwa;Son Jung-Hae;Jung Chil;Kim Mi-Hwa
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.29-33
    • /
    • 2003
  • I. Purpose Brachytherapy is the main component in treatment of patients with uterine cervical cancer. The reproducibility of applicator position in the same patient at repeated treatments was very important for accurate dose delivery. It was aimed to evaluate the change of applicator location between each high dose rate(HDR) brachytherapy insertion in the patients with uterine cervical cancer. II. Materials and Methods From January 1999 to October 2001, total 52 patients were treated with external beam radiotherapy and HDR brachytherapy (Microselectron, Nucletron). During six to seven times of brachytherapy, all patients had three treatment plans. From the orthogonal radiographs, we measured the following variables; height from upper border of pubic bone to os (HPO), distance from sacral promontory to tip of tandem (DST), distance from coccyx to os (DCO), distance from tip of right ovoid to os (DRO), distance from tip of left ovoid to os (DLO), and distance from center of the first tandem source to ovoid (DTO). To evaluate the reproducibility of applicator position, it was calculated the standard deviation of differences between three insertions for the 7 parameters in each patient. III. Results The ranges of standard deviations of interfractional differences for the variables were as follows. 1)HPO : $0{\sim}0.79cm$ 2)DST : $0{\sim}0.9cm$ 3)DCO : $0.06{\sim}0.76cm$ 4)DRO : $0{\sim}0.53cm$ 5)DLO : $0{\sim}0.45cm$ 6) DTO $0{\sim}0.36cm$ IV. Conclusions There was some change in applicator position on repeated implants in our study. But variation of the interfractional differences was minimal; in all parameters, there were less than 1 cm. We are continued to try for reducing the geometric variation between each procedure.

  • PDF