• Title/Summary/Keyword: Orthogonal away

Search Result 17, Processing Time 0.018 seconds

SHAPING A NOZZLE WITH A CENTRAL BODY (스파이크 노즐 설계)

  • KIM C. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.293-298
    • /
    • 2005
  • We calculate the coordinates of an axisymmetric nozzle with a central body. This nozzle ensures a transonic flow with a plane sound surface, which is orthogonal to the symmetry axis and has a wall kink at the sonic point, The Chaplygin transformation in the subsonic part of the flow leads the Dirichlet problem for a system of nonlinear equations. The definition domain of the solution in the velocity-hodograph plane is taken as a rectangle. This enables one to obtain the nozzle with a monotonic distribution of velocity along its subsonic part. In the nonlinear differential equation, the linear Chaplygin operator for plane flows is separated, which allows the iterative calculation of the solution. The supersonic part of the nozzle is calculated under the assumption that the flow at the nozzle exit is uniform and parallel to the symmetry axis; i.e., the supersonic jet outflows to the submerged space with the same pressure. The calculation is performed by the characteristic method. The exact solution of Tricomi equation for near-sonic flows with the straight sonic line is used to 'move away' the sound plane. The velocity distribution alone the supersonic part of the nozzle is also monotonic, which ensures the absence of the boundary-layer separation and, therefore, the adequacy of the ideal-gas model. calculations show that the flow in the supersonic part of the nozzle is continuous (compression shocks are absent)

  • PDF

Shape Optimization of the Lower Control Arm using the Characteristic Function and the Fatigue Analysis (특성함수와 피로해석을 이용한 로워컨트롤암의 형상최적설계)

  • Park Youngchul;Lee Donghwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.119-125
    • /
    • 2005
  • The current automotive is seeking the improvement of performance, the prevention of environmental pollution and the saving of energy resources according to miniaturization and lightweight of the components. And the variance analysis on the basis of structure analysis and DOE is applied to the lower control am. We have proposed a statistical design model to evaluate the effect of structural modification by performing the practical multi-objective optimization considering weight, stress and fatigue lift. The lower control arm is performed the fatigue analysis using the load history of real road test. The design model is determined using the optimization of acquired load history with the fatigue characteristic. The characteristic function is made use of the optimization according to fatigue characteristics to consider constrained function in the optimization of DOE. The structure optimization of a lower control arm according to fatigue characteristics is performed. And the optimized design variable is D=47 m, T=36mm, W=12 mm. In the real engineering problem of considering many objective functions, the multi-objective optimization process using the mathematical programming and the characteristic function is derived an useful design solution.

Coded Layered Space-Time Transmission with Signal Space Diversity in OFDM Systems (신호 공간 다이버시티 기법을 이용한 OFDM 기반의 부호화된 시공간 전송기법)

  • Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.644-651
    • /
    • 2007
  • In multiple antenna systems, vertical Bell Labs Layered Space-Time (V-BLAST) systems enable very high throughput by nulling and cancelling at each layer detection. In this paper, we propose a V-BLAST system which combines with signal space diversity technique. The benefit of the signal space diversity is that we can obtain an additional gain without extra bandwidth and power expansion by applying inphase/quadrature interleaving and the constellation rotation. Through simulation results, it is shown that the performance of the proposed system is less than 0.5dB away from the ideal upper bound.

Satellite Communication Microstrip 8X2 Away Antenna for TX / RX Dual Operation at Ku-band (Ku 대역 위성통신 송수신 겸용 마이크로스트립 8X2 배열 안테나)

  • 윤재승;전순익;최재익;채종석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.574-581
    • /
    • 2002
  • Microstrip $8{ imes}2$ sub-array antennas for a extension to active phased array antennas are designed, fabricated and measured for TX/RX dual operation in satellite communication and a reception of satellite broadcasting. For the frequency range from 11.7 to 12.75 GHz for RX and from 14 to 14.5 GHz for TX, two orthogonal linear polarizations of ${pm}45^{\circ}$ are used to transmit and receive simultaneously with one radiator. They adopt dual resonance between two patches for wideband characteristics in RX band and show isolation characteristics over 20 dB. An electrical beam tilt of $30^{\circ}$ is achieved and a tapered power distribution, narrow element spacing are used for the purpose of low side-lobe characteristics.

Internal Stress/Strain Analysis during Fatigue Crack Growth Retardation Using Neutron Diffraction (피로 균열 성장 지연에 대한 중성자 회절 응력 분석)

  • Seo, Sukho;Huang, E-Wen;Woo, Wanchuck;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.398-404
    • /
    • 2018
  • Fatigue crack growth retardation of 304 L stainless steel is studied using a neutron diffraction method. Three orthogonal strain components(crack growth, crack opening, and through-thickness direction) are measured in the vicinity of the crack tip along the crack propagation direction. The residual strain profiles (1) at the mid-thickness and (2) at the 1.5 mm away from the mid-thickness of the compact tension(CT) specimen are compared. Residual lattice strains at the 1.5 mm location are slightly higher than at the mid-thickness. The CT specimen is deformed in situ under applied loads, thereby providing evolution of the internal stress fields around the crack tip. A tensile overload results in an increased magnitude of the compressive residual stress field. In the crack growth retardation, it is found that the stresses are dispersed in the crack-wake region, where the highest compressive residual stresses are measured. Our neutron diffraction mapping results reveal that the dominant mechanism is by interrupting the transfer of stress concentration at the crack tip.

Development of Magnetic Field Mapping System Using Robot (로봇을 이용한 자기장 측정 시스템 개발)

  • Kim, Man-Gil;An, In-Seok;Lee, Pyeong-Gi;Park, Sang-Bae;Lee, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.1018-1021
    • /
    • 2003
  • This dissertation is reference to measure visual information about the configuration of magnetic field automatically and materialize the new magnetic field mapping system for the rapid and clear measure by using of the mediocrity orthogonal robot in the three- dimensional space required the measure of magnetic field concurrently. The measuring sensor is composed to be available for the measure of three-dimensional direction of magnetic field by vertically conjoining each of three hall sensors utilized of the hall effect and installed Gaussmeter, which is devised to receive the sensor result and the robot controller, away from the measuring robot in order to minimize the affection of magnetic field. Also, the controller and Gaussmeter are composed of Use interface, RS-232C and IEEE-488.2 communication. Interface system is written in NI's LabVIEW and composed to be able to set up a measuring area, the measuring number of times, two and three-dimensional graph, the velocity of robot and the magnetic field distribution graph of each element by inputting parameters. The materialized magnetic field mapping system expert the collection of the data easily and the effect of utilizing data.

  • PDF

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF