• Title/Summary/Keyword: Orthogonal Turning

Search Result 41, Processing Time 0.026 seconds

A Study on Analysis of Parameter for Optimal Surface Quality in Face Turning (단면 선삭가공에서 최적의 표면품위를 위한 피라미터 분석에 관한 연구)

  • Maeng, Min-Jae;Jang, Sung-Min
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.21-27
    • /
    • 2006
  • In this paper, object of experiment is to study on the effect parameters to obtain optimal surface roughness in face turning. Surface roughness is significantly important to be high quality of parts produced by turning process. For this purpose, the optimization of cutting parameters for face turning operation is investigated applying the Taguchi method. An orthogonal array, signal-to-noise, and the analysis of variance are employed to evaluate effect of cutting parameters for face turning. Also confirmation tests were performed to make a comparison between the results predicted from the mentioned correlations and the theoretical results. Cutting experiment is performed without cutting fluid using coated tungsten carbide insert about workpiece of SM45C. And regression analysis technique has been used to study the effects of the cutting parameters.

A Study on the effect of cutting parameters in face turning based on the Taguchi method (다구찌 방법에 기초한 단면절삭에서 절삭파라미터 영향에 관한 연구)

  • 장성민;조명우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.111-116
    • /
    • 2003
  • In this paper, object of experiment is to study on the effect of cutting parameters to obtain optimal surface toughness in face turning. Surface roughness is significantly important to be high quality of parts produced by turning process. For this purpose, the optimization of cutting parameters for fan Owning operation is investigated applying the Taguchi method. An orthogonal array, signal-to-noise ratio, and the analysis of variance are employed to evaluate effect of cutting parameters fir face turning. Also confirmation tests were performed to make a comparison between the results predicted from the mentioned correlations and the theoretical results. Cutting experiment is performed without cutting fluid using coated tungsten carbide inserts about workpieces of SM45C.

  • PDF

Residual sterss and damaged layer in an intermittent hard turning (단속하드터닝에서 잔류응력과 가공변질층의 고찰)

  • 전준용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.270-276
    • /
    • 2000
  • Hard turning has the potential to replace grinding process and to achieve significant reduction in production time and cost. The main applications for hard turning is finishing process, namely grinding process. Therefore, it must be able to satisfy high surface integrity of the workpiece. This paper discusses surface quality in terms of residual stress and damaged layer with respect to cutting parameters in an intermittent hard turning. Damaged layer experiment is carried out orthogonal array. From that is based on the orthogonal array. From the response table, cutting parameters are analyzed from the view point of the damaged layer and residual stress. From this experimental results, even though in the intermittent hard turning, surface integrity turns out be good enough for replacing grinding process.

  • PDF

A Study on the Prediction Model of Surface Roughness by the Orthogonal Design for Turning Process (선반작업에서 직교계획법을 이용한 표면 거칠기 예측모델에 관한 연구)

  • 홍민성;염철만
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • This paper presents a study of surface roughness prediction model by orthogonal design in turning operation. Regression analysis technique has been used to study the effects of the cutting parameters such as cutting speed, feed depth of cut, and nose radius on surface roughness. An effect of interaction between two parameters on surface roughness has also been investigated. The experiment has been conducted using coated tungsten carbide inserts without cutting fluid. The reliability of the surface roughness model as a function of the cutting parameters has been estimated. The results show that the experimental design used in turning process is a method to estimate the effects of cutting parameters on sur-face roughness.

  • PDF

Prediction of Cutting Temperature in Flank Face at High Speed Steel in Orthogonal Turning (2차원 선삭시 고속도강 공구의 플랭크면 절삭온도 예측)

  • Jun, Tae-Ok;Bae, Choon--Eak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.222-231
    • /
    • 1996
  • Temperature distribution on the flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junciton imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on flank face of cutting tool with igh speed steel. The analytical results show that the temperature on the top flank face of a tool is higher because of the difference of the friction velocity on each face of the tool.

Prediction of Cutting Temperature at High Speed Steel in Orthogonal Turning based on Finite Element Method (2차원 선삭시 유한요소법에 의한 고속도강공구의 절삭온도 예측)

  • Jun, Tae-Ok;Bae, Choon-Eek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.102-112
    • /
    • 1995
  • Temperature distribution on the rake face and flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junction imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on both the rake face and flank face of cutting tool with high speed steel. The analytical results show that the temperature on the top flank face of a tool is higher than it on the top rake face of the tool because of the difference of the friction velocity on each face of the tool.

  • PDF

Cutting Force Analysis in End Milling Process for High-Speed Machining of Difficult-to-Cut Materials (난삭재 고속가공에서의 엔드밀링 공정의 절삭력 해석)

  • 전태수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.359-364
    • /
    • 1999
  • Due to rapid growth of die and mould industries, it is urgently required to maximize the productivity and the efficiency of machining. In recent years, owing to the development of new kinds of material, die and mould materials are much harder and it is more difficult to cut. In this study, the workpiece SKD11(HRC45) is cut with TiAlN coated tungsten-carbide cutting tools. To find the general characteristics of difficult-to-cut materials, orthogonal turning test is performed. Orthogonal cutting theory can be expanded to oblique cutting model. The oblique cutting process in the small cutting edge element has been analyzed as orthogonal cutting process in the plane containing the cutting velocity vector and chip-flow vector. Hence, with the orthogonal cutting data obtained from orthogonal turning test, the cutting forces can be analyzed through oblique cutting model. The simulation results have shown a fairy good agreement with the test results.

  • PDF

FEM Analysis of Turning Multi-layer Metal (다중 적층 금속의 선삭가공에 대한 FEM 해석)

  • Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.57-63
    • /
    • 2011
  • The aim of this study is to analyze turning process using commercial FEM simulation code. Various simulation models of orthogonal cutting process for 3 layers of metallic material have been simulated and analyzed. The workpiece material used for the orthogonal plane-strain metal cutting simulation consists of three layers, which are Allow Tool Steel, Aluminum and Stainless Steel. The finite element model is composed of a deformable workpiece and a rigid tool. The tool penetrates through the workpiece at a constant speed and constant feed rate. As an analytical result, detailed cutting temperature, strain, pressure, residual stress for both a tool and each layer of workpiece were obtained during the turning process. It has been closely observed that the chip flow curve deforms continuously.

Tool Material Dependence of Hard Turning on The Surface Quality

  • Park, Young-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • This paper presents an experimental study of the effect of cutting tool materials on surface quality when turning hardened steels. Machining tests on a lathe are performed using polycrystalline cubic boron nitride (PCBN) and ceramic tools at various cutting conditions without coolant. From the experiments, it is observed that the radial force is the largest force component regardless the type of tool used. The specific cutting energy for the hard turning is estimated to be considerably smaller than the specific grinding energy. It is also found that cutting force and surface roughness with the PCBN tools are higher and better than those with the ceramic tools under the same cutting condition. It is due that the PCBN tools transfer the generated heat more effectively than the ceramic tools due to their higher thermal conductivity. The optimal cutting conditions for the best surface quality are selected by using an orthogonal array concept.

Searching Optimal Cutting Condition for Surface Roughness In Turning Operation on Inconel 718 using Taguchi Method (다구찌 방법을 이용한 Inconel 718 소재의 선삭가공에서 표면거칠기 최적화)

  • Cha, Jin-Hoon;Han, Sang-Bo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.295-300
    • /
    • 2010
  • Inconel 718 alloy, widely used as material of aircraft engine, has a good mechanical property in high temperature, strong anti-oxidation characteristics in oxidated current over $900^{\circ}C$, and also is not easily digested in the air containing sulfur, therefore, its usage as mechanical component is expanding rapidly. Even though Inconel alloy 718 is difficult to machine, it requires highly precise processing/machining to sustain its component quality of high accuracy. In this paper, general turning operation conditions arc tested to select the best cutting process condition by measuring surface roughness through implementing experiments with orthogonal array of cutting speed, feeding speed and cutting depth as processing parameters based on the Taguchi method. Optimal turning operation conditions are extracted from the proposed experimental models.