• Title/Summary/Keyword: Orthogonal Cutting

Search Result 149, Processing Time 0.026 seconds

Prediction of Serrated Chip Formation in High Speed Metal Cutting (고속 절삭공정 중 톱니형 칩 생성 예측)

  • 임성한;오수익
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.358-363
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5Τ$_{m}$. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.s.

A technique for the identification of friction at tool/chip interface during machining

  • Arrazola, P.;Meslin, F.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.319-320
    • /
    • 2002
  • Numerical simulation of chip formation during high speed machining requires knowing the friction at tool/chip interface. This parameter is hardly identified and generally the loadings (temperature, force) during the identification are not similar to those encountered during machining. Thus, Coulomb friction identified with pin-on-disc device is often used to conduct numerical simulation. The used of this technique cannot leads to good numerical results of chip formation compared to the experimental tests especially in the case of low uncut chip thickness. In this contribution, we propose a new method to evaluate the friction at tool/chip interface. In fact several Coulomb friction parameters are identified corresponding to several parts of the cutting tool. Experimental tests have been conducted allowed us to determinate both the level and the distribution of the Coulomb friction. Experimental results are also compared to the results of orthogonal cutting simulation. We show that this technique allows predicting accuracy results of chip formation.

  • PDF

The effect of coating wire on the performance of wire electrical discharge machining (코팅와이어가 와이어 방전가공 특성에 미치는 영향)

  • 임세환;김준현;김주현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.177-185
    • /
    • 2004
  • The machining performance of wire electrical discharge machining(WEDM), such as cutting speed, surface roughness and straightness depend on the electrode, and the machining parameters are diverse and affect each other. Therefore operator must have a lot of experiences of the parameter for the better machining performance in WEDM. An approach to minimize the time for determining of parameters setting is proposed. Based on the Taguchi method, the significant factors affecting the machining performance are determined. Types of electrodes are arranged at inner array in tables of orthogonal arrays so that we can estimate machining performances of each electrode. Coating wire shows better performances than brass wire in cutting speed but it produces poor surface roughness, and two wires shows similar performance in straightness

Determination of stress state in chip formation zone by central slip-line field

  • Andrey Toropov;Ko, Sung-Lim
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.577-580
    • /
    • 2003
  • Stress state of chip formation zone is one of the main problems in metal cutting mechanics. In two-dimensional case this process is usually considered as consistent shears of work material along single of several shear surfaces. separating chip from workpiece. These shear planes are assumed to be trajectories of maximum shear stress forming corresponding slip-line field. This paper suggests new approach to the constriction of slip-line field, which Implies uniform compression in chip formation zone. On the base of given model it has been found that imaginary shear line in orthogonal cutting is close to the trajectory of maximum normal stress and the problem about its determination have been considered. It has been shown that there is a second central slip-line field inside chip, which corresponds well to experimental data about stress distribution on tool rake face and tool-chip contact length. The suggested model could be useful in solution of various problems of machining.

  • PDF

Effect of Coating and Machining Parameters on Surface Finish in Dry Drilling of Aluminium 6061 (Al 6061의 드릴가공에서 공구코팅과 공정변수가 표면정도에 미치는 영향)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.47-52
    • /
    • 2015
  • In this paper, the performance of uncoated- and Titanium nitride aluminium TiAlN-PVD coated- carbide twist drills were investigated when drilling aluminium alloy, Al 6061. This research focuses on the optimization of drilling parameters using the Taguchi technique to obtain minimum surface roughness and thrust force. A number of drilling experiments were conducted using the L9 orthogonal array on a CNC vertical machining center. The experiments were performed on Al 6061 material l blocks using uncoated and coated HSS twist drills under dry cutting conditions. Analysis of variance(ANOVA) was employed to determine the most significant control factors. The main objective is to find the important factors and combination of factors influence the machining process to achieve low surface roughness and low cutting thrust force. From the analysis of the Taguchi method indicates that among the all-significant parameters, feed rate are more significant influence on surface roughness and cutting thrust than spindle speed.

Physically Compatible Characteristic Length of Cutting Edge Geometry (공구날 특이길이의 물리적 적합성 고찰)

  • Ahn, Il-Hyuk;Kim, Ik-Hyun;Hwang, Ji-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.279-288
    • /
    • 2012
  • The material removal mechanism in machining is significantly affected by the cutting edge geometry. Its effect becomes even more substantial when the depth of cut is relatively small as compared to the characteristic length which represents the shape and size of the cutting edge. Conventionally, radius or focal length has been employed as the characteristic length with the assumption that the shape of cutting edge is round or parabolic. However, in reality, there could be various ways to determine the radius or focal length even for the same tool edge profile, depending on the region to be considered as cutting edge in the measured profile and the constraints to be set in constructing the best fitted circle or parabola. In this regard, the present study proposes various models to determine the characteristic length in terms of radius or focal length. Their physical compatibility are validated by carrying out 2D orthogonal cutting experiments using inserts with a wide range of characteristic length ($30{\sim}180\;{\mu}m$ in terms of radius) and then by investigating the correlation between the characteristic length and the cutting forces. Such validation is based on the common belief that the larger the characteristic length is, the blunter the cutting edge is and the higher the cutting forces are. Interestingly, the results showed that the correlation is higher for the radius or focal length obtained with a constraint that the center of best fitted circle or the focus of the best fitted parabola should be on the bisectional line of the wedge angle of tool.

Analysis of cutting forces and roughness during hard turning of bearing steel

  • Bouziane, Abderrahim;Boulanouar, Lakhdar;Azizi, Mohamed Walid;Keblouti, Ouahid;Belhadi, Salim
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.285-294
    • /
    • 2018
  • An experimental study has been carried out to analyze the effect of cutting parameters (cutting speed, feed and depth of cut) and tool nose radius on the surface roughness and the cutting force components during hard turning of the AISI 52100 (50 HRC) steel with a ceramic cutting tool. The tests have been conducted according to the methodology of planning experiments, based on an orthogonal plan of Taguchi (L27). By using the response surface methodology (RSM), the components of the cutting force and the roughness of the machined surface were modeled and the effects of the input parameters were analyzed statistically by ANOVA and RSM. The results show that the feed (f), the tool nose radius (r), the cutting speed (Vc), the interaction between feed and tool nose radius ($f{\times}r$) as well as that of the quadratic effect ($f^2$) all have significant effects on the surface roughness (Ra). The feed is the most influencing factor with a contribution of 47.31%. The components of the cutting force were strongly influenced by the depth of cut, followed by the advance with a lower degree. By comparing the experimental values with those predicted by the models of the cutting force components and the surface roughness, it appears that they are in very good correlation.

The Study on the Optimal Working Condition for Vibration, Surface Roughness and Cutting Temperature in End-milling (엔드밀 가공시 진동, 표면거칠기, 절삭온도에 미치는 최적가공조건에 관한 연구)

  • Hong, Do-Kwan;Kim, Dong-Young;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1322-1329
    • /
    • 2004
  • End-milling has been used widely in industrial system because it is effective to a material manufacturing with various shapes. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in precision machine part and electronic part. The optimum mechanical vibration of main spindle, surface roughness and cutting temperature have an effect on end-milling condition such as, cutting direction, revolution of spindle, feed rate and depth of cut, etc. Therefore, this study carried to decide the working condition for optimum mechanical vibration of main spindle, surface roughness and cutting temperature using design of experiments, ANOVA and characteristic function. From the results of experimentation, mechanical vibration has an effect on revolution of spindle, radial depth of cut, and axial depth of cut. The surface roughness has an effect on cutting direction, revolution of spindle and depth of cut. And then the optimum condition used design of experiments is upward cutting In cutting direction, 600 rpm in revolution of spindle, 240 mm/min in feed rate, 2 mm in axial depth of cut and 0.25 mm in radial depth of cut. By design of experiments and characteristic function, it is effectively represented shape characteristics of mechanical vibration, surface roughness and cutting temperature in end-milling.

The Effect of Matric of Nodular Graphite Cast Iron on Machinability in Lathe Turning (球狀黑鉛鑄鐵의 基地組織이 切削性에 미치는 影響 I)

  • 성환태;안상욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.74-81
    • /
    • 1987
  • The orthogonal cutting method of the nodular graphite cast iron in the lathe turning, whose structure were formulated under two kinds of annealing conditions, has been experimentally studied and the results investigated. The various characteristics of machinabilities of the nodular cast iron, depending upon its structure, have been obtained from the results as follows. (1) As depth of cut increases, the shearing strain decreases and tend gradually to increase with increase of ferrite matrix. (2) As depth of cut increases, the shearing stress slightly decreases for P$_{1}$, but it tends to increase for both of P$_{2}$ and P$_{3}$ under the same condition. The annealing effect in the process of light cutting was found to be greater than heavy cutting. (3) The cutting energy slightly decreases with the increassing of the depth of cut, and the effect of decreasing the cutting energy by the annealing is higer the light cutting than the heavy cutting. (4) The cutting equations as follow. P$_{1}$ : 2.phi.+1.58(.betha.-alpha.)=92 deg. P$_{2}$ : 2.phi.+1.40(.betha.-alpha.)=84 deg. P$_{3}$ : 2.phi.+1.37(.betha.-alpha.)=82 deg. (5) The machining constants for P$_{1}$, P$_{2}$ and P$_{3}$ which are the test-pieces in this study and classified according to the containing quantity of ferrite matrix given respectively in 78deg., 70 deg., and 68 deg. From these it can be known that the machining constants slightly decreases with increasing of the quantity of ferrite matrix contained in the nodular graphite cast iron.

Estimation of Machinability of Lead Brass Based on In-Situ Observation in Scanning Electron Microscope (전자현미경 In-Situ 관찰방법을 이용한 황동의 절삭성평가)

  • Jung, Seung-Boo;Lim, Ok-Dong;An, Seong-Uk
    • Applied Microscopy
    • /
    • v.24 no.3
    • /
    • pp.87-93
    • /
    • 1994
  • In order to elucidate the machinability of lead brass, orthogonal machining experiment was conducted in SEM(Scanning Electron Microscope) equipped with a micro-machining device at a cutting speed of $7{\mu}m/s$ for brass containing 0.2 to 3wt% Pb. The microfactors (i.e., shear angle, contact length between chip and tool) were determined by in-situ observations. Machinability of brass containing lead is discussed in terms of the microfactors and the cutting resistant force tested by lathe cutting. The dynamic behavior of the chip formation of lead brass during the machining process was examined: The chips of lead brass form as a shear angle type. The shear angle increases with the content of lead in (6:4) brass. The pronounced effect of lead on the contact length between chip and tool was observed above 1% Pb. The cutting resistant force tested by lathe decreases remarkably with the lead content in brass. The observed microfactors are in close relation to the tested resistant force in macromachining.

  • PDF