• Title/Summary/Keyword: Orthogonal Arrays

Search Result 160, Processing Time 0.023 seconds

Analysis of Machined Surface Morphology According to Changes of Surface Condition in Micro Particle Blasting (미세입자 분사가공 시 표면 조건 변화에 따른 가공 표면 형상 분석)

  • Choi, Sung-Yun;Hwang, Cheol-Ung;Kwon, Dae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-75
    • /
    • 2018
  • This study analyzes the change of Al 6061-T6 specimen surface shape when undergoing microparticle spraying and analyzes the influence of factors on the experiment. Fine particle spraying is applied to the specimen and the surface shape of the processed surface is measured through a surface shape measuring device. The measured data was analyzed by the ANOVA method to investigate the effect of factors such as particle, nozzle diameter, pressure, injection height, and injection time on the injection depth and injection diameter.

Statistical characterisation of end milling of AISI 52100 annealed bearing steel

  • Benghersallah, Mohieddine;Benchiheub, Slimane;Amirat, Abdelaziz
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.137-148
    • /
    • 2018
  • The present paper is a contribution in characterising end milling process of AISI 52100 ball bearing steel through statistical analyses of variance (ANOVA). The latter has been performed to identify the effect of the cutting parameters on the machined surface roughness and the cutting tool life. Wear measurements have been carried on multilayer coated carbide inserts and the respective surface roughness has been recorded. Taguchi's technique has been adapted to conduct the design experiments in terms of orthogonal arrays according to the cutting parameters (cutting speed, feed rate and depth of cut), the type of coating (TiN, TiCN, TiAlN) and lubricating condition. Regression analyses have conducted to the development of simplified empirical models that can be effectively used to predict surface roughness and tool wear in the present milling process.

Signal-Subspace-Based Simple Adaptive Array and Performance Analysis (신호 부공간에 기초한 간단한 적응 어레이 및 성능분석)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.162-170
    • /
    • 2010
  • Adaptive arrays reject interferences while preserving the desired signal, exploiting a priori information on its arrival angle. Subspace-based adaptive arrays, which adjust their weight vectors in the signal subspace, have the advantages of fast convergence and robustness to steering vector errors, as compared with the ones in the full dimensional space. However, the complexity of theses subspace-based methods is high because the eigendecomposition of the covariance matrix is required. In this paper, we present a simple subspace-based method based on the PASTd (projection approximation subspace tracking with deflation). The orignal PASTd algorithm is modified such that eigenvectora are orthogonal to each other. The proposed method allows us to significantly reduce the computational complexity, substantially having the same performance as the beamformer with the direct eigendecomposition. In addition to the simple beamforming method, we present theoretical analyses on the SINR (signal-to-interference plus noise ratio) of subspace beamformers to see their behaviors.

Development of Design System for EPS Cushioning Package of Monitor Using Axiomatic Design (공리적 설계를 이용한 모니터용 EPS 완충 포장 설계 시스템 개발)

  • Yi, Jeong-Wook;Ha, Dae-Yul;Lee, Sang-Woo;Lim, Jae-Moon;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1644-1652
    • /
    • 2003
  • The monitor product is packed by cushioning materials because the monitor can be broken during transportation. However, the addition of the cushioning material increased the volume of the product. Therefore, it is required that the usage of cushioning material be minimized. In practice, design engineers have followed the ad hoc design with experiences of predecessors. Automation of the design process is very important for the reduction of engineering cost, and can be achieved by an excellent design process and software development. According to Axiomatic design, a design flow is defined and a software system is developed for automated design. At first, a basic model is defined. A user can modify the model from menus and design is carried out according to the input from the user. Finite element models are automatically generated based on the design. A nonlinear finite element analysis program called LS/DYNA3D is linked for the impact analysis. The process of Design of Experiments using orthogonal array is installed to minimize the maximum acceleration in drop test. Therefore, a new design can be proposed by the system. The program is designed according to the Independence Axiom of Axiomatic design. FRs and DPs of the software system are defined and decomposed by zigzagging process. Independent modules can be generated by analysis of the full design matrix and each module is coded as class in Object Oriented Programming (OOP). Design results are discussed.

Robust Design of vehicle Intoner Noise using Taguchi method and Substructure Synthesis Method (다구찌법과 부분구조합성법을 이용한 차실소음 강건설계)

  • Kim, Hyo-Sig;Tanneguy, DE-KERDREL;Kim, Hee-Jin;Cho, Hyo-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.134-139
    • /
    • 2005
  • This paper presents a robust design of vehicle interior noise using Taguchi method and a substructure synthesis method with a hybrid model. Firstly, the proposed method identifies the critical process of the concerned interior noise through a TPA (Transfer Path Analysis). Secondly, a strategy for a robust design is discussed, in which the major noise factor among uncertainties in the process is quality distribution of rubber bushes connecting a cradle and a trimmed body. Thirdly, a virtual test model fer the process is developed by applying a substructure synthesis method with a hybrid modeling approach. Fourthly, virtual tests are carried out according to the predefined tables of orthogonal array in Taguchi robust design process. The process was performed under 2 sub-steps. The first step is sensitivity analysis of 31 panels, and the other step is weight optimization of mass dampers on sensitive panels. Finally, two vehicles with the proposed countermeasures were validated. The proposed method reduces 87.5% of trials of measurements due to the orthogonal arrays and increases robustness by 8.6dB of S/N ratio and decreases $5\;dB(A){\sim}10\;dB(A)$ of interior noise in the concerned range of RPM.

  • PDF

An Experimental Study on the Optimum Design of Sirocco Fan by Using Taguchi Method (다구찌 방법을 이용한 시로코 홴의 최적설계에 관한 실험적 연구)

  • Kim, Jang Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.761-768
    • /
    • 1999
  • This paper is studied to find the optimum condition of double-inlet Sirocco fan installed in an indoor PAC for low noise operation by the Taguchi method. The goal of this study is to obtain the best combination of each control factor which results in a desired flowrate of Sirocco fan with minimum variability. In this study, the parameter design of the Taguchi method is adopted for robust design by the dynamic characteristic analysis using orthogonal arrays and S/N ratios. The flowrate measurements are conducted by using a multiple-nozzle-type fan tester according to the orthogonal array L9($3^4$). The results of this study can be summarized as follows ; (i) The optimum condition of control factor is a set of where A is an inner to outer diameter ratio($D_1/D_2$), B is a width to outer diameter ratio($L/D_2$), C is a blade attachment angle(${\theta}$) and D is a number of blade(Z), (ii) The flowrate under the optimum condition satisfies the equation $y=0.0384{\cdot}M$ where M is a signal factor, namely number of revolution. The flowrate performance improves about 7.3% more largely as compared with the current condition, which results in about 35RPM reduction of number of revolution for the target flowrate $18.5m^3/min$, and (iii) The sensitivity analysis shows that the major factors in contribution to flowrate performance are A, B, and D ; the percentage contributions of each control factor are 44.01%(Z), 26.77%($D_1/D_2$) and 20.42%($L/D_2$).

Analysis of Process Parameters in the Incremental Roll Forming Process for the Application to Doubly Curved Ship Hull Plate (점진적 롤 성형 공정의 선박 곡가공 적용을 위한 공정 변수 분석)

  • Shim D. S.;Yoon S. J.;Lee S. R.;Seong D. Y.;Han Y. S.;Han M. S.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.322-325
    • /
    • 2005
  • In order to make a doubly-cowed sheet metal effectively, the sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation in thickness. The developed process is an unconstrained forming process without holder. The experimental equipment has been set up with the roll set which consists of two pairs of support rolls and one center roll. In order to analyze process parameters in the incremental roll forming process for the application to doubly curved ship hull plate, the orthogonal array is adopted. From the FEM results, among the process parameters, the distance between supporting rolls in pairs along the direction of one principal radius of curvature as well as the forming depth is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principal radius of curvature, does not have an significant effect on the generation of the curvature in that direction. Also, the forming load and torque from the FEM simulation are acceptable to the system development of the incremental roll forming process for the forming of ship hull plate.

  • PDF

Characteristics of Ground-Penetrating Radar (GPR) Radargrams with Variable Antenna Orientation

  • Yoon Hyung Lee;Seung-Sep Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Ground penetrating radar (GPR) survey is a geophysical method that utilizes electromagnetic waves reflecting from a boundary where the electromagnetic property changes. As the frequency of the antenna is about 25 MHz ~ 1 GHz, it is effective to acquire high resolution images of underground pipe, artificial structure, underground cavity, and underground structure. In this study, we analyzed the change of signals reflected from the same underground objects according to the arrangement of transceiver antennas used in ground penetrating radar survey. The antenna used in the experiment was 200 MHz, and the survey was performed in the vertical direction across the sewer and the parallel direction along the sewer to the sewer buried under the road, respectively. A total of five antenna array methods were applied to the survey. The most used arrangement is when the transmitting and receiving antennas are all perpendicular to the survey line (PR-BD). The PR-BD arrangement is effective when the object underground is a horizontal reflector with an angle of less than 30°, such as the sewer under investigation. In this case study, it was confirmed that the transmitter and receiver antennas perpendicular to the survey line (PR-BD) are the most effective way to show the underground structure. In addition, in the case where the transmitting and receiving antennas are orthogonal to each other (XPOL), no specific reflected wave was observed in both experiments measured across or parallel to the sewer. Therefore, in the case of detecting undiscovered objects in the underground, the PR-BD array method in which the transmitting and receiving antennas are aligned in the direction perpendicular to the survey line taken as a reference and the XPOL method in which the transmitting and receiving antennas are orthogonal to each other are all used, it can be effective to apply both of the above arrangements after setting the direction to 45° and 135°.

The Optimal Design for Noise Reduction of the Intake System in Automobile Using Kriging Model (크리깅을 이용한 자동차 흡기계의 소음 저감에 대한 최적 설계)

  • Sim Hyoun-Jin;Ryu Je-Seon;Cha Kyung-Joon;Oh Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.465-472
    • /
    • 2006
  • Recently, the regulations of the government and the concerns of people have rise to the interest in noise pollution levels as compared to other vehicles. In this area, many researchers have studied to reduce this noise in the field of automotive engineering. This paper proposes an optimal design scheme to reduce the noise of the intake system by adapting Kriging with two meta-heuristic techniques. For this, as a measuring tool for the performance of the intake system, the performance prediction software, was used. Then, the length and radius of each component of the current intake system are selected as input variables and the orthogonal arrays is adapted as a space-filling design. With these simulated data, we can estimate a correlation parameter in Kriging by solving the nonlinear problem with a genetic algorithm and find an optimal level for the intake system by optimizing Kriging estimated with simulated annealing. We notice that this optimal design scheme gives noticeable results and is a preferable way to analyze the intake system. Therefore, an optimal design for the intake system is proposed by reducing the noise of its system.

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • 김진만
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.67-76
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency. In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 20mm of flow value and above 300kgf/cm2 of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~l5% AG.

  • PDF