• Title/Summary/Keyword: Orthogonal Array Method

Search Result 298, Processing Time 0.024 seconds

The Parameter Optimization Decision of Plastic Molding Using Taguchi Method (다구찌 방법을 이용한 난연ABS 사출공정의 최적조건 결정)

  • 조용욱;박명규
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.2
    • /
    • pp.167-176
    • /
    • 2000
  • A study to analyze and solve problems of plastic injection molding experiment has presented in this paper. We have taken Taguchi's parameter design approach, specifically orthogonal array, and determined the optimal levels of the selected variables through analysis of the experimental results using S/N ratio.

  • PDF

Design of a Feeding Mechanism for Longitudinal Banknote Counters (길이방향 지폐계수기 투입구의 최적 설계)

  • Yoon, Jun-Ill;Kim, Kwon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.848-852
    • /
    • 2001
  • A new approach to the design of bank note counters is suggested. Modern bank note counters are equipped with several types of sensors for counting and detection of counterfeit bank notes. To achieve higher speed of counting while maintaining the sensing capability, longitudinal feeding scheme is proposed. Several merits of longitudinal feeding are discussed. Taguchi method is used for the optimization of the feeding mechanism.

  • PDF

Design of the Active Hood Lift System Using Orthogonal Arrays (직교배열표를 이용한 액티브 후드 리프트 시스템의 설계)

  • Shin, Moon-Kyun;Park, Kyung-Taek;Lee, Keun-Bae;Bae, Han-Il;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.123-131
    • /
    • 2006
  • The majority of pedestrian fatalities and injuries are caused by vehicle-pedestrian accidents. Recently, it has been recognized as a serious problem. Injuries of occupants in a vehicle have been decreased considerably. However, efforts for protection of pedestrians are still insufficient. These days, many advanced industries are striving for a better protection of pedestrians by using an active hood lift system, rather than reforming the existing structure. In this research, the active hood lift system is designed to enhance the performance for protection. The active hood lift system is analyzed by using the nonlinear finite element method. An optimization problem is formulated by incorporation of the analysis results. Orthogonal arrays are utilized to solve the formulated problem. An iterative optimization algothrithm using orthogonal arrays is utilized for design in the discrete space. It is found that the method can remarkably decrease the number of function evaluations.

Impact toughness improvement of an undercarriage track shoe using the Taguchi orthogonal array experiment (다구찌 직교배열 실험을 이용한 무한궤도용 트랙 슈의 충격인성 향상 연구)

  • Kim, Young Suk;Chang, Keun Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1611-1619
    • /
    • 2015
  • This study examined the toughness improvement of a track shoe used as the undercarriage of excavator and bulldozer parts. The excavator is operated under poor conditions, such as the build-up field and quarry. Therefore, the track shoe requires high strength and impact toughness to endure immense shock while at work. The track shoe was made of heat treated boron steel. The sufficient possibility of hardenability with the theoretical Jominy curve for boron steel was confirmed while quenching. The Taguchi orthogonal array experiment method was used to optimize the process variables, such as area reduction ratio and heat treatment conditions (tempering temperature and holding time), to achieve toughness improvement. The toughness of the track shoe increased with increasing area reduction, and a tempering temperature of $210^{\circ}C$ and a tempering time of 80 min are beneficial for improving the toughness of the track shoe.

Structural Design Considering Interactions in Discrete Design Spaces (이산공간에서의 구조물 설계시 교호작용에 대한 연구)

  • Lee, K.H.;Hwang, K.H.;Kwon, W.S.;Park, G.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.708-713
    • /
    • 2000
  • The design of experiment(DOE) is getting more attention in the engineering community since it is easy to understand and apply. Recently, engineering designers are adopting DOE with orthogonal arrays when they want to design products in a discrete design space. In this research, a design flow with orthogonal arrays is defined fur structural design according to the general DOE. The design problem is defined as a general structural optimization problem. Sensitivity information is evaluated by the analysis of variance(ANOVA), and an optimum design is determined from analysis of means(ANOM). Interactions between design variables are investigated to achieve additivity which should be valid in DOE. When strong interactions exit, a method is proposed. Some methods to consider the problem are suggested.

  • PDF

Design of Muffler using Taguchi Method and Experimental Design (다구찌 방법과 실험계획법을 이용한 소음기의 설계 방법)

  • 오재응;차경준;이규태;진정언
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.121-129
    • /
    • 1999
  • Recently, the regulations from the govemment and the concems of the people give rise to the interest in exhaust noise of passenger car as much as other vehicles. The exact analysis of various mufflers is needed to reduce the level of exhaust noise. In this paper, we propose a design to improve the mufflers capacity by reducing noise of exhaust system combining Taguchi method and fractional factorial design. In order to measure the performance of a muffler, the performance prediction software which is developed by the Dept. of Automotive Engineering at Hanyang University is used. From the current muffler system we select control factors such as lenght and radius of each component that are thought to be effective on capacity of muffler. Factors are arranged using L18, L27 table of orthogonal array and the fractional factorial design for analysis. We find some significant interaction effects using 1/3 fractional factorial design and accomplish the reduction of noise from the muffler.

  • PDF

The Optimal Parameter Decision of$\beta$ carotene Mass Production Using Taguchi Method (다구찌 방법을 이용한 $\beta$-carotene 대량생산의 최적환경 조건 결정)

  • 조용욱;박명규
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.3
    • /
    • pp.27-36
    • /
    • 2000
  • The Robust Design method uses a mathematical tool called orthogonal arrays to study a large number of decision variables with a small number of experiments. It also uses a new measure of quality, called signal-to-noise (S/N) ratio, to predict the quality from the customer's perspective. Thus, the most economical product and process design from both manufacturing and customers' viewpoints can be accomplished at the smallest, affordable development cost. Many companies, big and small, high-tech and low-tech, have found the Robust Design method valuable in making high-quality products available to customers at a low competitive price while still maintaining an acceptable profit margin. A study to analyze and solve problems of a biochemical process experiment has presented in this paper. We have taken Taguchi's parameter design approach, specifically orthogonal array, and determined the optimal levels of the selected variables through analysis of the experimental results using S/N ratio.

  • PDF

A Study on Selection of Optimal Basic Dimensions by Utilization of Orthogonal Array Table in Industrial Design (산업 디자인에 있어서 직교배열표 적용에 따른 기초치수 적정치 산출에 관한 연구)

  • 홍성수;이재환
    • Archives of design research
    • /
    • v.16 no.3
    • /
    • pp.183-190
    • /
    • 2003
  • It is a fundamental pre-requisite to thoroughly analyse and understand the things which are being designed in the process of industrial design. However, it is not always easy to acquire appropriate data to meet all the requirements to finally design a functionally superior products. This paper proposes an industrial design model with heightened reliability using the orthogonal array tables, which are fairly handy to apply when there are many design criteria to be considered at the onset stage Especially, in this research, the basic purpose of the orthogonal arrays that they try to compact the range of experiments and to improve the effectiveness of the experiment results is answered under average industrial design processes. At the same time, non-quantitative data of design factors are quantitative by the concurrency in design and their mutual actions are examined. This method can help industrial designers in narrowing their design possiblities by depicting more valid data, thus producing quality product designs by deriving optimal control factors.

  • PDF

A study on the Robust Control Cain Selection Scheme of a High-Speed/High-Accuracy position Control System using Taguchi Method (다꾸지 방법을 이용한 고속/정밀 위치제어시스템의 강인한 제어게인 선정에 관한 연구)

  • 신호준;채호철;윤석찬;장진희;한창수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.521-527
    • /
    • 2002
  • This paper presents a dynamic modeling and a robust PID controller design process for the wire bonder head assembly. For the modeling elements, the system is divided into electrical system, magnetic system, and mechanical system. Each system is modeled by using the bond graph method. The PID controller is used for high speed/high accuracy position control of the wire bonder assembly. The Taguchi method is used to evaluate the more robust PID gain combinations than conventional one. This study makes use of an L18 array with three parameters varied on three levels. Computer simulations and experimental results show that the designed PID controller provides more improved signal to noise ratio and reduced sensitivity than the conventional PID controller.

  • PDF

A Study on the PID Control Gain Selection Scheme of a High-Speed/High-Accuracy position Control System using Taguchi Method (다구찌 방법을 이용한 고속/정밀 위치제어시스템의 PID 제어게인 선정에 관한 연구)

  • 신호준;채호철;한창수
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • This paper presents a dynamic modeling and a robust PID controller design process for the wire bonder head assembly. For modeling elements, the system is divided into electrical part, magnetic part, and mechanical part. Each part is modeled using the bond graph method. The PID controller is used for high speed/high accuracy position control of the wire bonder assembly. The Taguchi method is used to obtain the more robust PID gain combinations than conventional one. This study makes use of an L18 array with three parameters varied on three levels. Results of simulations and experimental show that the designed PID controller provides a improved ratio of signal to noise and a reduced sensitivity improved to the conventional PID controller.

  • PDF