• Title/Summary/Keyword: Orthodontic wire

Search Result 144, Processing Time 0.018 seconds

A MOLECULAR BIOLOGIC STUDY ON BIOCOMPATIBILITY OF METALLIC DENTAL MATERIALS USED FOR CHILDREN WITH CULTURED HUMAN GINGIVAL FIBROBLASTS (인체 섬유모세포(HGF-1) 배양에서 소아용 치과금속재의 세포친화성에 대한 분자생물학적 연구)

  • Kim, Ju-Mi;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.243-254
    • /
    • 2002
  • For the purpose of evaluating the biocompatability of 3 kinds of metallic materials frequently used in pediatric dentistry (stainless steel crown, orthodontic band, orthodontic wire), cellular and molecular studies, including cell growth and proliferation, screening of cell death with determination of types whether necrosis or apoptosis and changes in expressions of related signaling molecules were examined, using cultured human gingival fibroblasts (HGF-1), HGF-1 was cultured in Dulbecco's modified Eagle's medium. among which the 3rd to 6th generations of HGF-1 were used. The specimen were divided into stainless steel crown (R), band (B) and wire (W). The immunocytochemical study was done for the detection of anti-PCNA (proliferating cell nuclear antigen) labeling. With extracted protein, western blot was done for the detection of ERK1/2, JNK, and p38, using individual antibodies. Cultured cells proliferated, remarkably till 7 day and slightly at 11 day. There was no statistical significance in the counts of proliferating HGF-1 between control and experimental groups (p>0.05). Relative growth rates were no statistically significant difference between control and experimental groups (p>0.05). PCNA labeling indexes showing similar patterns in control and experimental groups. The expressions of ERK1 and ERK2, p38 were similar in control and experimental groups. The expression of JNK increased at 1st day, slightly decreased at 4th day and markedly increased at 7th and 11 day. Although the patterns of control and experimental groups were similar, the increased expressions of JNK at late period suggest a possible stress due to inhibited cell growth and proliferation, and worse culture condition. Conclusively, the 3 kinds of metal specimens used in this study did not induce cellular and molecular hazards during short term culture of HGF-1. But, for the better clinical stability, the establishment of long period culture and animal experiment was thought necessary.

  • PDF

The effect of bracket width on frictional force between bracket and arch wire during sliding tooth movement (치아의 활주 이동시 브라켓 폭이 브라켓과 호선 사이의 마찰력에 미치는 효과)

  • Choi, Won-Cheul;Kim, Tae-Woo;Park, Joo-Young;Kwak, Jae-Hyuk;Na, Hyo-Jeong;Park, Du-Nam
    • The korean journal of orthodontics
    • /
    • v.34 no.3 s.104
    • /
    • pp.253-260
    • /
    • 2004
  • Frictional force between the orthodontic bracket and arch wire during sliding tooth movement is related to many factors, such as the size, shape and material of both the bracket and wire, ligation method and the angle formed between the bracket and wire. There have been clear conclusions drawn in regard to most of these factors, but as to the effect of bracket width on frictional force there are only conflicting studies. This study was designed to investigate the effect of bracket width on the amount of frictional forces generated during clinically simulated tooth movement. Three different widths of brackets $(0.018{\times}0.025'\;standard)$ narrow (2.40mm), medium (3.00mm) and wide (4.25mm) were used in tandem with $0.016{\times}0.022'$ stainless steel wire. Three bracket-arch wire combinations were drawn on for 4 minutes on a testing apparatus with a head speed of 0.5mm/min and tested 7 times each. To reproduce biological conditions, dentoalveolar models were designed with indirect technique using a material with similar elastic properties as periodontal ligament (PDL). In addition, to minimize the effect of ligation force, elastomer was used with added resin, which was attached to the bracket to make up for the discrepancies of bracket width. The results were as follows: 1. Maximum frictional force for each bracket-arch wire combination was: Narrow (2.40mm): $68.09\pm4.69gmf$ Medium (3.00mm): $72.75\pm4.98 gmf$ Wide (4.25mm): $72.59\pm4.54gmf$ 2. Frictional force was increased with more displacement of wire through the bracket slot. 3. The ANOVA psot-hoc test showed that the bracker width had no significant effect on frictional force when tested under clinically simulated conditions(p>0.05).

REHABILITATION OF MISSING ANTERIOR TOOTH USING FIBER-REINFORCED COMPOSITE RESIN (Fiber-reinforced composite resin을 이용한 전치부 결손 수복)

  • Park, Heon-Jeong;Kim, Jong-Soo;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.1
    • /
    • pp.62-68
    • /
    • 1999
  • One of the many dilemmas that the clinical restorative dentist must face is treating young adolescent patient who prematurely loses his permanent teeth. Temporary prosthetic replacement can be achieved with removable denture, orthodontic band-wire fixed denture, adhesion bridge, composite resin splint with reinforcing material until the patients go through growth and development. But, all of these have limitations. Advances in restorative materials and reinforcement materials have made possible new techniques which are as much esthetic, conservative and more economic and stronger than adhesion brides. Two cases are being presented where gas-plasma treated, woven polyethylene fabric to reinforce composite resin was used to fabricate a temporary prosthetic restoration to replace a missing maxillary central incisor. This relatively noninvasive and basically reversible procedure allows the patient to decide the final restoration as he or she goes thorough maturation of the hard and soft tissues.

  • PDF

Orthodontic treatment in a patient with Moebius syndrome: A case report

  • Lee, Sanghee;Moon, Cheol-Hyun
    • The korean journal of orthodontics
    • /
    • v.52 no.6
    • /
    • pp.451-460
    • /
    • 2022
  • Moebius syndrome (MBS) is a congenital neurologic disorder that causes cranio-facial abnormalities. It involves paralysis of the VI and VII cranial nerves and causes bilateral or unilateral facial paralysis, eye movement disorder, and deformation of the upper and lower limbs. The orofacial dysfunctions include microstomia, micrognathia, hypotonic mimetic and lip muscles, dental enamel hypoplasia, tongue deformity, open bite or deep overbite, maxillary hypoplasia, high arched palate, mandibular hyperplasia or features indicating mandibular hypoplasia. This case report presents a 7-year-old male patient who was diagnosed with MBS at the age 2 years. The patient displayed typical clinical symptoms and was diagnosed with Class II malocclusion with a large overjet/overbite, tongue deformity and motion limitation, and lip closure incompetency. Treatment was initiated using a removable appliance for left scissor bite correction. After permanent tooth eruption, fixed appliance treatment was performed for correction of the arch width discrepancy and deep overbite. A self-ligation system and wide-width arch form wire were used during the treatment to expand the arch width. After 30 months of phase II treatment, the alignment of the dental arch and stable molar occlusion was achieved. Function and occlusion remained stable with a Class I canine and molar relationship, and a normal overjet/overbite was maintained after 9.4 years of retainer use. In MBS patients, it is important to achieve an accurate early diagnosis, and implement a multidisciplinary treatment approach and long-term retention and follow-up.

Frictional resistance of different ceramic brackets and their relationship to the second order angulation between bracket slot and wire (세라믹 브라켓의 종류 및 브라켓 슬롯과 와이어 각도에 따른 마찰 저항 차이)

  • Choi, Yoon-Jeong;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.207-217
    • /
    • 2006
  • Although ceramic brackets have been used widely for improved esthetics during treatment, ceramic brackets have some inherent problems; brittleness, attrition of the opposing teeth and high frictional resistance. This study was performed to understand the frictional resistance of the ceramic brackets, as well as to be a helpful reference for finding the solutions to the problem of frictional resistance. Three different kinds of brackets were used; metal bracket, polycrystalline ceramic brackets with a metal slot to reduce the high frictional resistance and monocrystalline ceramic brackets. The brackets were tested with a $.019{\times}.025$ stainless steel wire with a second order angulation of $0^{\circ}\;and\;10^{\circ}$, and the static and kinetic frictional forces were measured on the universal testing machine. The results of this study showed that the ceramic brackets, especially the monocrystalline ceramic bracket without a metal slot, generated higher frictional resistance than the metal bracket, and the frictional resistance was increased as the angulation between the bracket slot and the wire increased. Therefore, the development of the ceramic bracket with reduced frictional resistance and the prevention of excessive crown tipping during orthodontic treatment will lead to the simultaneous attainment of more efficient and improved esthetic treatment goals.

ORTHODONTIC TRACTION OF HORIZONTALLY ERUPTED LOWER LATERAL INCISOR ON THE LINGUAL SIDE (설측으로 수평 맹출한 하악 측절치의 교정적 견인)

  • Mah, Yon-Joo;Sohn, Hyung-Kyu;Choi, Byung-Jai;Lee, Jae-Ho;Kim, Seong-Oh
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.1
    • /
    • pp.117-123
    • /
    • 2010
  • Tooth eruption is the movement of the tooth from the developing place in the alveolar bone to the functional position in the oral cavity. The permanent incisors originate from the dental lamina on the lingual side of preceding deciduous tooth and erupt to the level of the occlusion through the well developed gubernacular cord. Ectopic eruption is a developmental disturbance in the eruption pattern of the permanent dentition. Most of the ectopically erupted lower incisor has been found in lingual side. The ectopically erupted tooth could be repositioned by orthodontic force in the early mixed dentition, which could help preventing the problems of loss of space and the lingual tilting of the lower anterior teeth. An eight-year-old girl visited the department of pediatric dentistry, Yonsei Dental University Hospital, for the evaluation and the treatment of the lower right lateral incisor, which was horizontally erupted in the lingual side, parallel to the mouth floor. Her tongue was placed on the labial side of that tooth. There was no previous dental history of dental caries or trauma on the pre-occupied primary incisor. Clinical and radiographic examinations including the computed tomography(CT), showed no evidence of dilacerations on root. Therefore, we decided to start active orthodontic traction of the lower right lateral incisor. We designed the fixed type of buccal arch wire and the lip bumper with hook for the traction. Button was attached to the lingual side of the ectopically positioned tooth. Elastic was used between the appliance and the button on that tooth. After the tooth become upright over the tongue level, appliance was change to the removable type and periodic check-up with occlusal guidance was followed to monitor the position of the tooth. In this case using the fixed appliance with modified form of lip bumper and hook embedded in acrylic part instead of extraction was very efficient up-righting the ectopically erupted tooth toward the occlusal plane.

The effect of temperature changes on force level of superelastic nickel-titanium archwires (온도 변화가 교정용 니켈-티타늄 호선의 하중값에 미치는 영향)

  • Chun, Kyoung-Ae;Kim, Kwang-Won;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.37 no.6
    • /
    • pp.432-439
    • /
    • 2007
  • The purpose of this study was to evaluate the influence of intraoral temperature changes on the orthodontic force level of a superelastic nickel-titanium alloy wire. Methods: Nickel-titanium archwires of $0.016"{\times}0.022"$ thickness were tested with a three point bending test setup, and temperature changes were applied. The force level changes according to temperature changes were measured at a 1.5 mm deflection during the loading phase and a 1.5 mm deflection during the unloading phase from a deflection to 3.1mm. Ten cycles of thermal cycling from baseline $(37^{\circ}C)$ to cold $(20^{\circ}C)$ or hot $(50^{\circ}C)$temperature were applied. Results: Alter thermal cycling, the force level during the loading phase decreased and the force level during the unloading phase increased even after the temperature was changed to the initial $37^{\circ}C$. Conclusions: The results suggest that the orthodontic force level can not return to the initial force level after temperature changes. When applying superelastic nickel-titanium archwires, we must consider that a lighter force than the loading force and a heavier force than the unloading force will be applied after intraoral temperature changes caused by eating and drinking.

Spatial changes of the maxillofacial complex following maxillary protraction of human dry skull (건조 두개골에서 상악의 전방 견인후 상악 안면 복합체의 공간 변화에 관한 연구)

  • Chun, Youn Sic;Choi, Jang Woo;Choi, Seung Eun;Lee, Seong Geun
    • The korean journal of orthodontics
    • /
    • v.32 no.6 s.95
    • /
    • pp.425-434
    • /
    • 2002
  • The purpose of this investigation was to study the spatial changes of the maxillofacial complex following maxillary protraction transmitted to the center of resistance of a dry juvenile human skull by a modified maxillary protraction appliance. Four dry juvenile human skulls (without mandible) with well aligned upper deciduous dentition and early mixed dentition were used as experimental samples. A modified protraction headgear was fabricated from a Delare's facemask, and following an alginate impression, an orthodontic resin maxillary splint was made for each dry skull. Protraction force level was maintained at approximately 1000gm per side for 6 hours. Cephalometric radiographs were taken pre- and post- protraction, and nine reference markers with 1.5 mm length of $.017\times.025$ TMA wire were placed on the right side of the skull for an accurate superimposition of serial cephalometric radiographs. The present investigation demonstrated that vertical changes associated with an anterior displacement of the maxillary complex was observed, and the most prominent effect of protraction headgear was a counterclockwise rotation of the maxilla, that is, a forward and downward tipping around the palatomaxillary region.

The Effect of Splinting Methods on the Rearrangement of Periodontal Fibers after Tooth Movement in Adult Dogs (치아이동 후 고정방법이 성견 치주인대 섬유의 재배열에 미치는 영향)

  • Lee, Kr-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.825-837
    • /
    • 1997
  • The purpose of this study was to evaluate the effect of splinting methods on the rearrangement of periodontal fibers after experimental tooth movement. Orthodontic force was applied by placing closed coil spring between upper third incisor and canine in seven dogs, weighing 20 kg or more. After 3 weeks of force application, 0.0215 inch multistrand wire and polyethylene ribbon were bonded to each side, as a flexible and rigid splinting respectively in 6 experimental animals. The remaining one served as a control. Each two animals were sacrificed at 4, 8 and 12 weeks after splinting respectively and prepared histologically for hematoxylin-eosin and Masson's trichrome staining. The results of this study were obtained as follows: 1. After tooth movement, periodontal space was narrowed and periodontal titers were thick on pressure side while elongated fibers were observed on tension side. 2. After 4 weeks of retention, the rearrangement of periodontal fibers was observed in the flexible splinting group, but not in the rigid splinting group. 3. After 8 weeks of retention, the rearrangement of periodontal titers was observed in both groups, but the difference could not be detected between two groups. 4. During the retention period, the rearrangement of periodontal fibers was faster in tension side than in pressure side. These results show that the rearrangement of periodontal fibers is also obtained by rigid splinting after tooth movement. It is suggested that the rigid splinting by polyethylene ribbon can be used as a way of postorthodontic retention.

  • PDF

Finite-element investigation of the center of resistance of the maxillary dentition (상악 치아군의 저항중심의 위치에 관한 3차원 유한요소 해석)

  • Jeong, Gwang-Mo;Sung, Sang-Jin;Lee, Kee-Joon;Chun, Youn-Sic;Mo, Sung-Seo
    • The korean journal of orthodontics
    • /
    • v.39 no.2
    • /
    • pp.83-94
    • /
    • 2009
  • Objective: The aim of this study was to investigate the 3-dimensional position of the center of resistance of the 4 maxillary anterior teeth, 6 maxillary anterior teeth, and the full maxillary dentition using 3-dimensional finite element analysis. Methods: Finite element models included the whole upper dentition, periodontal ligament, and alveolar bone. The crowns of the teeth in each group were fixed with buccal and lingual arch wires and lingual splint wires to minimize individual tooth movement and to evenly disperse the forces to the teeth. A force of 100 g or 200 g was applied to the wire beam extended from the incisal edge of the upper central incisor, and displacement of teeth was evaluated. The center of resistance was defined as the point where the applied force induced parallel movement. Results: The results of study showed that the center of resistance of the 4 maxillary anterior teeth group, the 6 maxillary anterior teeth group, and the full maxillary dentition group were at 13.5 mm apical and 12.0 mm posterior, 13.5 mm apical and 14.0 mm posterior, and 11.0 mm apical and 26.5 mm posterior to the incisal edge of the upper central incisor, respectively. Conclusions: It is thought that the results from this finite element models will improve the efficiency of orthodontic treatment.