• Title/Summary/Keyword: Orthodontic resin cement

Search Result 21, Processing Time 0.031 seconds

THE SHEAR BOND STRENGTH OF TWO ADHESIVES BONDED TO COMPOSITE RESIN AND GLASS IONOMER CEMENT RESTORATIONS (복합레진과 Glass Ionomer Cement수복물에 대한 Bracket의 접착전단강도)

  • Han, Jae-Ik;Rhee, Byung-Tae
    • The korean journal of orthodontics
    • /
    • v.20 no.3 s.32
    • /
    • pp.583-591
    • /
    • 1990
  • If the bond strength is sufficient to resist orthodontic force, orthodontic brackets can be bonded to restorations. Orthodontic brackets were bonded to composite resin and glass ionomer cement restorations with no-mix adhesive or glass ionomer cement. The shear bond strength of adhesives bonded to restorations was studied in vitro. Orthodontic brackets were bonded to 10 extracted natural teeth, 40 composite resin restorations and 40 glass ionomer restorations. The surfaces of composite resin restorations were roughened or applied with bonding agent (Scothbond) after surface roughening. The surfaces of glass ionomer cement restorations were conditioned with acid etching or applied with Scotchbond to etched surface. The adhesive was no-mix resin or glass ionomer cement. The shear bond strength was measured. The results were as follows: 1. Orthodontic brackets could be bonded to composite resin restorations effectively as they could be bonded to acid etched enamel with no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was not affected by bonding agent greatly. 2. The shear bond strength of no-mix adhesive bonded to acid etched glass ionomer cement restorations was sufficient to resist orthodontic force. However. the fracture risk of glass ionomer cement restorations was increased during debonding. The bonding agent couldn't increase the shear bond strength greatly. 3. The shear bond strength of glass ionomer cement bonded to glass ionomer cement restorations was lower than that of no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was greatly decreased by bonding agent. 4. The shear bond strength of glass ionomer cement bonded to composite resin restorations was too low to resist orthodontic force.

  • PDF

Bond Strength of Band on Zirconia Crown with Compomer and Resin Cement (지르코니아 기성관에 컴포머와 레진 시멘트로 접착한 교정 밴드의 결합력)

  • Park, Chanhee;Lee, Jonghyung;Lee, Hangil;Kim, Jihun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.127-134
    • /
    • 2019
  • The aim of this study was to evaluate the compomer cement and resin cement as an orthodontic band cement on zirconia crown. A total of 30 specimens were prepared. Preformed stainless steel crowns and zirconia crowns of upper right second primary molar were used. Orthodontic bands were cemented on stainless steel crowns (Group I, n = 10) and zirconia crowns (Group II, n = 10) with compomer cement. The other bands were cemented on zirconia crowns with resin cement (Group III, n = 10). The tensile loads were applied to band to measure the bond strength. The mean of bond strengths of group I, II and III were 0.79 MPa, 1.09 MPa and 1.56 MPa respectively. Bond strength of group II is significantly higher than group I. There was no significant difference between group II and III. Compomer cement and resin cement containing functional monomers showed favorable bond strength of orthodontic bands.

THE EFFECTS OF CRYSTAL GROWTH ON SHEAR BOND STRENGTH OF ORTHODONTIC BRACKET ADHESIVES TO ENAMEL SURFACE (Crystal growth에 의한 법랑질 표면처리가 교정용 브라켓 접착제의 전단결합강도에 미치는 영향)

  • Lee, Young-Jun;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.839-852
    • /
    • 1997
  • It has been submitted that different ion solutions containing sulfate induce crystal growth and might substitute conventional acid etching for pretreatment of enamel in orthodontic bonding(${\AA}rtun$ et al., Am. J. Orthod. 85, 333, 1984). This investigation was designed to evaluate the relevance of crystal growth on the enamel surface as an alternative to conventional acid etching in direct bonding of orthodontic brackets. Annexing Li2SO4, MgSO4, K2SO4 respectively in the solution with $25\%$ polyacrylic md 0.3M sulfuric acids were employed to enhance the crystal growth. Human bicuspids were treated with various parameters as combinations of crystal growth and glass ionomer cement, crystal growth and orthodontic resin, acid etching and orthodontic resin for an investigative purpose. Crystal growth solution containing MgSO4 showed the highest shear bond strength(15.6MPa) within the groups of bonding brackets with glass ionomer cement(p<0.01). Bonding with glass ionomer cement on the surface of crystal growth demonstrated higher shear bond strength than with orthodontic resin(p<0.001). Bonding with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 was not different shear bond strength statistically from bonding with orthodontic resin on the acid-etched surface. It suggests that bonding brackets with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 is a potential alternative to bonding with resin on the acid etched sufrace.

  • PDF

Effect of applying adhesive after enamel etching on the shear bond strength of orthodontic brackets using light curing resin cements (광중합형 레진시멘트를 사용한 치열교정용 브라켓 접착 시 접착제 사용 유무가 산 부식한 법랑질의 전단접착강도에 미치는 영향)

  • Kim, Eung-Hyun;Kim, Jin-Woo;Park, Se-Hee;Lee, Yoon;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.4
    • /
    • pp.209-216
    • /
    • 2021
  • Purpose: The purpose of this study is to compare the shear bond strength of resin cement for orthodontic brackets without applying an adhesive primer, to the case of applying an adhesive primer. Materials and Methods: The specimens were divided into three experimental groups, Transbond XT, GC Ortho Connect and Orthomite LC, and the enamel surface was divided into two sections, one with 37% phosphoric acid and the other with 37% phosphoric acid and an adhesive primer or universal adhesive. Each of three types of cement was applied to orthodontic bracket, and after bonding, the shear bond strength was measured. Results: Transbond XT and Orthomite LC significantly increased shear bond strength when orthodontic brackets were bonded after applying an adhesive primer and universal adhesive, respectively. Conclusion: It is expected that application of an adhesive primer or universal adhesive after acid etching will improve shear bond strength of orthodontic brackets in Transbond XT and Orthomite LC.

Resin bonding of metal brackets to glazed zirconia with a porcelain primer

  • Lee, Jung-Hwan;Lee, Milim;Kim, Kyoung-Nam;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.45 no.6
    • /
    • pp.299-307
    • /
    • 2015
  • Objective: The aims of this study were to compare the shear bond strength between orthodontic metal brackets and glazed zirconia using different types of primer before applying resin cement and to determine which primer was more effective. Methods: Zirconia blocks were milled and embedded in acrylic resin and randomly assigned to one of four groups: nonglazed zirconia with sandblasting and zirconia primer (NZ); glazed zirconia with sandblasting, etching, and zirconia primer (GZ); glazed zirconia with sandblasting, etching, and porcelain primer (GP); and glazed zirconia with sandblasting, etching, zirconia primer, and porcelain primer (GZP). A stainless steel metal bracket was bonded to each target surface with resin cement, and all specimens underwent thermal cycling. The shear bond strength of the specimens was measured by a universal testing machine. A scanning electron microscope, three-dimensional optical surface-profiler, and stereoscopic microscope were used to image the zirconia surfaces. The data were analyzed with one-way analyses of variance and the Fisher exact test. Results: Group GZ showed significantly lower shear bond strength than did the other groups. No statistically significant differences were found among groups NZ, GP, and GZP. All specimens in group GZ showed adhesive failure between the zirconia and resin cement. In groups NZ and GP, bonding failed at the interface between the resin cement and bracket base or showed complex adhesive and cohesive failure. Conclusions: Porcelain primer is the more appropriate choice for bonding a metal bracket to the surface of a full-contour glazed zirconia crown with resin cement.

In vitro cytotoxicity of four kinds orthodontic band cements (수종 치과 교정용 밴드 시멘트의 세포독성에 관한 실험적 연구)

  • Lee, Won-Chul;Park, Soo-Byung
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.351-362
    • /
    • 2004
  • Orthodontic band cements are widely used in the fields of orthodontics, but they are commonly known as cytotoxic material. Within an oral cavity several ions and components are released from orthodontic band cements, thus causing inflammation or injury to the Periodontal tissue. Therefore, it is very important to estimate the biocompatibility of orthodontic band cements. The purpose of this study was to assess the cytotoxic effect of orthodontic band cements to HGF cells. A zinc phosphate cement, a glass ionomer, a resin modified glass ionomer, and compomer were used to evaluate three cytotoxicity assays: cell proliferation assay, MTT assay, and agar ovelay assay The results were as follows: 1. In the cell proliferation assay, Gl>ZPC, RMGI, RMGI24, GI24>compomer24, ZPC24, compomer>metal ring lined up in order of cytotoxicity 2. In the MTT assay, GI>ZPC, RMGI>GI24>ZPC24, compomer, metal ring, RMGI24, compomer24 lined up in order of cytotoxicity. 3. In the agar overlay test, GI>GI24, ZPC, ZPC24, RMGI>RMGI24, compomer, compomer24, metal ring lined up in order of cytotoxicity.

Change in shear bond strength of orthodontic brackets using self-etching primer according to adhesive types and saliva contamination (Self-etching primer를 사용하여 교정용 브라켓 접착 시 접착제와 타액오염에 따른 전단결합강도 변화)

  • Nam, Eun-Hye;Yoon, Young-Ah;Kim, Il-Kyu
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.433-442
    • /
    • 2005
  • The purpose of this study was to evaluate and compare the shear bond strength of orthodontic brackets depending on the variety of adhesives and whether saliva exists, by using self-etching primer (SEP). Groups were divided according to the type of adhesive into resin adhesive (Trans bond XT) and resin-modified glass ionomer cement (Fuji Ortho LC). One group of resin adhesive used XT primer after etching with 37% phosphoric acid, and the other group used self-etching primer. One group of resin-modified glass ionomer cement only used etching for bonding, and the other group used SEP. Each of the groups were also classified by whether saliva was contaminated or not. and then the shear bond strength was measured. The results showed that when using resin adhesive, the shear bond strength of SEP was lower than the XT primer. In the resin-modified glass ionomer cement groups, the shear bond strength which depends on the priming method, did not have a meaningful difference statistically When saliva was contaminated, the group which used SEP, regardless of the adhesive variety, had a greater shear bond strength than the normal priming group. From these results, SEP showed a shear bond strength that is possible to be used clinically, regardless of the adhesive variety. It can especially be clinically useful to use SEP to bond brackets even on tooth surfaces contaminated with saliva, because it offers the appropriate bonding strength as well as shorter treatment time and easy application.

Fluoride penetration from three orthodontic adhesives: an experimental study

  • Wagner, Leopold;Szepietowska, Magdalena
    • The korean journal of orthodontics
    • /
    • v.43 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • Objective: To examine the prophylactic potential of 3 orthodontic bonding adhesives: Fuji Ortho SC, Illuminate, and Resilience. Methods: Thirty-six Wistar Wag rats were randomly divided into 4 groups consisting of 9 rats each. One of the groups received no treatment and was used as a control. In the other groups, individual bands coated with one of the 3 adhesives were cemented to the lower incisors. Enamel samples were obtained after 6 and 12 weeks and analyzed using scanning electron microscopy in combination with energy dispersive spectrometry. Results: Six weeks after band cementation, no fluoride was found in the enamel of the lower incisors. After 12 weeks, there was no fluoride in the enamel of teeth coated with the Resilience composite. However, in the case of the Illuminate composite and the resin-modified glass ionomer Fuji Ortho SC cement, the depth of fluoride penetration reached $2{\mu}m$ and $4.8-5.7{\mu}m$, respectively. Conclusions: Fluoride ions from orthodontic adhesives can be incorporated into the surface layer of the enamel. Orthodontists may apply orthodontic adhesives, such as the Fuji Ortho SC, to reduce the occurrence of caries during orthodontic treatment with fixed appliances.

A COMPARATIVE STUDY ON SHEAR BOND STRENGTHS INFLUENCED BY TIME ELAPSED AFTER BRACKET BONDING WITH A LIGHT-CURED GLASS IONOMER CEMENT (광중합형 글래스아이오노머 시멘트의 브라켓 접착후 시간 경과에 따른 전단결합강도의 비교연구)

  • Lee, Ki-Soo;Lim, Ho-Nam;Park, Young Guk;Shin, Kang-Seob
    • The korean journal of orthodontics
    • /
    • v.25 no.5 s.52
    • /
    • pp.605-611
    • /
    • 1995
  • The purpose of this study was to evaluate effects of time on shear bond strengths of a light-cured glass ionomer cement and chemically cured resin cement to enamel, and to observe the failure patterns of bracket bondings. Shear bond strength of a light-cured glass ionomer cement were compared with that of a resin cement. Metal brackets were bonded on the extracted human bicuspids. Specimens were subjected to a shear load(in an Instron machine) after storage at room temperature for 5 and 15 minutes; after storage in distilled water at $37^{\circ}C$ for 1 or 35 days. The deboned specimens were measured In respect of adhesive remnant index. The data were evaluated and tested by ANOVA, Duncan's multiple range test, and t-test, and those results were as follows. 1. The shear bond strength of light-cured glass ionomer cement is higher than that of resin cement at 5 and 15 minutes. 2. The shear bond strengths of both light-cured glass ionomer cement and resin cement increase with time. There was no significant difference in those of both 1 day group and 35 day group 3. Light-cured glass ionomer cement is suitable as orthodontic bracket adhesives

  • PDF

Effect of storage condition of resin cement on shear bond strength of the orthodontic bracket (레진시멘트의 보관 조건이 치열교정용 브라켓의 전단접착강도에 미치는 영향)

  • Seul-Gi, Yi;Jin-Woo, Kim;Se-Hee, Park;Yoon, Lee;Eung-Hyun, Kim;Kyung-Mo, Cho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.4
    • /
    • pp.189-195
    • /
    • 2022
  • Purpose: For orthodontic bracket bonding, light curing resin cement is widely used because the process is convenient, and it can be polymerized at the desired time. This study compared the difference of bonding strength of orthodontic resin cement according to storage condition. Materials and Methods: After acid etching the bovine enamel surface with 37% phosphoric acid, 15 orthodontic brackets for mandible incisors were bonded with Ortho Connect and Orthomite LC according to following three conditions; 1) Immediate after 4℃ refrigeration for 3 months (IR), 2) One day room temperature after 4℃ refrigeration for 3 months (OR), 3) Room temperature for 3 months (RT). The shear bond strength was measured with a universal material tester and failure pattern of the specimen was observed. Two-way ANOVA and One-way ANOVA were used at the 95% significance level. Results: Ortho Connect that was applied immediately after refrigeration showed the maximum shear bond strength. Orthomite that was applied immediately after refrigeration showed the lowest shear bond strength, and the group stored at room temperature for three months showed the highest shear bond strength, and the difference between the two groups was significant. Conclusion: Ortho Connect can be used without worrying about bond strength even if it is used immediately after refrigeration, but Orthomite should be kept at room temperature sufficiently after refrigeration.