• Title/Summary/Keyword: Orthodontic mini-screw

Search Result 17, Processing Time 0.035 seconds

Evaluation of Insertion of torque and Pull-out strength of mini-screws according to different thickness of artificial cortical bone (다양한 교정용 미니 스크류의 인공 피질골 두께에 따른 삽입 토오크와 Pull-out 강도 비교)

  • Song, Young-Youn;Cha, Jung-Yul;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.37 no.1 s.120
    • /
    • pp.5-15
    • /
    • 2007
  • Objective: The purpose of this study was to evaluate the mechanical performance of mini-screws during insertion into artificial bone with use of the driving torque tester (Biomaterials Korea, Seoul, Korea), as well as testing of Pull-out Strength (POS). Methods: Experimental bone blocks with different cortical bone thickness were used as specimens. Three modules of commercially available drill-free type mini-screws (Type A; pure cylindrical type, Biomaterials Korea, Seoul, Korea, Type B; partially cylindrical type, Jeil Medical, Seoul, Korea, Type C; combination type of cylindrical and tapered portions, Ortholution, Seoul, Korea), were used. Results: Difference in the cortical bone thickness had little effect on the maximum insertion torque (MIT) in Type A mini-screws. But in Type B and C, MIT increased as the cortical bone thickness Increased. MIT of Type C was highest in all situations, then Type B and Type A in order. Type C showed lower POS than Type A or B in all situations. There were statistically significant correlations between cortical bone thickness and MIT, and POS for each type of the mini-screws. Conclusion: Since different screw designs showed different insertion torques with increases in cortical bone thickness, the best suitable screw design should be selected according to the different cortical thicknesses at the implant sites.

Contact non-linear finite element model analysis of initial stability of mini implant (접촉 유한요소모델을 이용한 미니 임플란트의 초기 응력분포 연구)

  • Yoon, Hyun-Joo;Jung, Ui-Won;Lee, Jong-Suk;Kim, Chang-Sung;Kim, Jung-Moon;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Sung-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.681-690
    • /
    • 2007
  • Mini implants had been used provisionally for the healing period of implants in the beginning. But it becomes used for the on-going purpose, because it is simple to use, economic and especially suitable for the overdenture. But there is few studies about the stability of mini implants, that is most important factor for the on-going purpose, and particularly the implant parameters affecting the initial stability. The purpose of this study was to evaluate the stress and the strain distribution pattern of immediate-loaded screw type orthodontic mini-implant and the parameters affecting the initial stability of immediate-loaded mini-implant. Two dimensional finite element models were made and contact non-linear finite element analysis was performed. The magnitude and distribution of Von Mises stresses were evaluated. The obtained results were as follows: 1. The stress was concentrated on the thread tip of an implant in the cortical bone. 2. The direction of load is the most important factor for the stress distribution in cortical bone. 3. The diameter of an implant is the most important factor for the stress distribution in the trabecular bone. In conclusion, if the horizontal load vector is successfully controlled, mini-implants, which diameter is under 3mm, can be used for the on-going purpose.

STUDY OF MAXILLARY CORTICAL BONE THICKNESS FOR SKELETAL ANCHORAGE SYSTEM IN KOREAN (Skeletal Anchorage System의 식립을 위한 한국인 악골의 피질골 두께에 대한 연구)

  • Kim, Ji-Hyuck;Joo, Jae-Yong;Park, Young-Wook;Cha, Bong-Kuen;Kim, Soung-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.4
    • /
    • pp.249-255
    • /
    • 2002
  • Recently, Skeletal Anchorage System (SAS) has been focused clinically with the view point that it could provide the absolute intraoral anchorage. First, it began to be used for the patient of orthognathic surgery who had difficulty in taking intermaxillary fixation due to multiple loss of teeth. And then, its uses have been extended to many cases, the control of bone segments after orthognathic surgery, stable anchorage in orthodontic treatment, and anchorage for temporary prosthesis and so on. SAS has been developed as dental implants technique has been developed and also called in several names; mini-screw anchorage, micro-screw anchorage, mini-implant anchorage, micro-implant anchorage (MIA), and orthosystem implant etc. Now many clinicians use SAS, but the anatomical knowledges for the installed depth of intraosseous screws are totally dependent on general experiences. So we try to study for the cortical thickness of maxilla and mandible in Korean adults without any pathologic conditions with the use of Computed Tomography at the representative sites for the screw installation.

Effect of cutting flute length and shape on insertion and removal torque of orthodontic mini-implants (교점용 미니 임플랜트의 cutting flute의 길이 및 형태에 따른 식립 및 제거 토크의 비교)

  • Yun, Soon-Dong;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.39 no.2
    • /
    • pp.95-104
    • /
    • 2009
  • Objective: The purpose of this study was to evaluate the effect of length and shape of cutting flute on mechanical properties of orthodontic mini-implants. Methods: Three types of mini-implants with different flute patterns (Type A with 2.6 mm long flute, Type B with 3.9 mm long and straight flute, Type C with 3.9 mm long and helical flute) were inserted into the biomechanical test blocks (Sawbones Inc., USA) with 2 mm and 4 mm cortical bone thicknesses to test insertion and removal torque. Results: In 4 mm cortical bone thickness, Type C mini-implants showed highest maximum insertion torque, then Type A and Type B in order. Type C also showed shortest total insertion time and highest maximum removal torque, but Type A and B didn't showed statistically significant difference in insertion time and removal torque. In 2 mm cortical bone thickness, there were no significant difference in total insertion time and maximum removal torque in three types of mini-implants, but maximum insertion torque of Type A was higher than two other Types of mini-implants. Conclusions: Consideration about length and shape of cutting flute of mini-implant is also required when the placement site has thick cortical bone.

A step-by-step guide to Meta-analysis with dichotomous outcomes using RevMan in dental research (치의학 연구에서 RevMan을 이용한 이분형 결과변수를 분석하기 위한 메타분석의 단계적 안내)

  • Park, Su-Hyeon;Lim, Hoi-Jeong
    • The Journal of the Korean dental association
    • /
    • v.56 no.1
    • /
    • pp.18-40
    • /
    • 2018
  • Meta-analysis is a statistical method that combines the results of individual studies on the same topic. This method is becoming popular, due to providing the combined result that individual studies cannot provide and giving a more precise result. Despite meta-analysis having such significance, there were few Korean guides for the use of the Review Manager (RevMan) software. This study will provide a step-by-step guide, using orthodontic mini-screw as a dental example, to help researcher carry out meta-analysis more easily and accurately.

  • PDF

Three-dimensional finite element analysis for determining the stress distribution after loading the bone surface with two-component mini-implants of varying length (다양한 길이의 two-component 미니 임플란트의 응력분산에 대한 3차원적 유한요소분석)

  • Choi, Bohm;Lee, Dong-Ok;Mo, Sung-Seo;Kim, Seong-Hun;Park, Ki-Ho;Chung, Kyu-Rhim;Nelson, Gerald;Han, Seong-Ho
    • The korean journal of orthodontics
    • /
    • v.41 no.6
    • /
    • pp.423-430
    • /
    • 2011
  • Objective: To evaluate the extent and aspect of stress to the cortical bone after application of a lateral force to a two-component orthodontic mini-implant (OMI, mini-implant) by using three-dimensional finite element analysis (FEA). Methods: The 3D-finite element models consisted of the maxilla, maxillary first molars, second premolars, and OMIs. The screw part of the OMI had a diameter of 1.8 mm and length of 8.5 mm and was placed between the roots of the upper second premolar and the first molar. The cortical bone thickness was set to 1 mm. The head part of the OMI was available in 3 sizes: 1 mm, 2 mm, and 3 mm. After a 2 N lateral force was applied to the center of the head part, the stress distribution and magnitude were analyzed using FEA. Results: When the head part of the OMI was friction fitted (tapped into place) into the inserted screw part, the stress was uniformly distributed over the surface where the head part was inserted. The extent of the minimum principal stress suggested that the length of the head part was proportionate with the amount of stress to the cortical bone; the stress varied between 10.84 and 15.33 MPa. Conclusions: These results suggest that the stress level at the cortical bone around the OMI does not have a detrimental influence on physiologic bone remodeling.

The Effect of a Condylar Repositioning Plate on Condylar Position and Relapse in Two-Jaw Surgery

  • Jung, Gyu Sik;Kim, Taek Kyun;Lee, Jeong Woo;Yang, Jung Dug;Chung, Ho Yun;Cho, Byung Chae;Choi, Kang Young
    • Archives of Plastic Surgery
    • /
    • v.44 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • Background Numerous condylar repositioning methods have been reported. However, most of them are 2-dimensional or are complex procedures that require a longer operation time and a highly trained surgeon. This study aims to introduce a new technique using a condylar repositioning plate and a centric relation splint to achieve a centric relationship. Methods We evaluated 387 patients who had undergone surgery for skeletal jaw deformities. During the operation, a centric relation splint, intermediate splint, final centric occlusion splint, and condylar repositioning plate along with an L-type mini-plate for LeFort I osteotomy or a bicortical screw for bilateral sagittal split ramus osteotomy were utilized for rigid fixation. The evaluation included: a physical examination to detect preoperative and postoperative temporomandibular joint dysfunction, 3-dimensional computed tomography and oblique transcranial temporomandibular joint radiography to measure 3-dimensional condylar head movement, and posteroanterior and lateral cephalometric radiography to measure the preoperative and postoperative movement of the bony segment and relapse rate. Results A 0.3% relapse rate was observed in the coronal plane, and a 2.8% relapse rate in the sagittal plane, which is indistinguishable from the dental relapse rate in orthodontic treatment. The condylar repositioning plate could not fully prevent movement of the condylar head, but the relapse rate was minimal, implying that the movement of the condylar head was within tolerable limits. Conclusions Our condylar repositioning method using a centric relation splint and miniplate in orthognathic surgery was found to be simple and effective for patients suffering from skeletal jaw deformities.