• Title/Summary/Keyword: Orthodontic adhesive

Search Result 79, Processing Time 0.028 seconds

A COMPARISON OF SHEAR BOND STRENGTH OF VARIOUS ORTHODONTIC ADHESIVES (수종 교정용 접착제의 전단 접착강도 비교)

  • You, Mi-Hee;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.24 no.2
    • /
    • pp.433-445
    • /
    • 1994
  • Bonding of brackets is one of the essential factors for successful orthodontic treatment' so bond strength of orthodontic adhesives are very important. The purposes of this research were to compare shear bond strength of various orthodontic adhesives and to evaluate failure sites. One-hundred twenty extracted human first premolars were prepared for bonding and premolar brackets were bonded to prepared enamel surfaces with Super C Ortho, Mono-$Lok^2$, Transbond, and Super C Ortho after applying Fluorobond. After bonding of brackets, teeth specimens were divided into 3 groups. In group 1 specimens were stored at humidor $37^{\circ}C$ in 1 hour, in group 2 specimens were stored at humidor $37^{\circ}C$ in 24 hours, thermocycled 10 times and in group 3 specimens were stored at humidor $37^{\circ}C$ in 24 hours, thermocycled 1800 times. Then the universal testing machine Instron 6022, Instron Co., U.S.A. was used to test the shear bond strength of brackets to enamel. After debonding, brackets and enamel surfaces were examined under stereoscopic microscope to determine the failure sites The results were as follows : 1. Shear bond strength was significantly highest of using Super C Ortho after applying Fluorobond and Super C Ortho In group 1, was highest of using Super C Ortho in group 2, and was highest of using Mono-$Lok^2$ in group 3. 2. According to time and temperature change, in using Super C Ortho the group 2 had significantly highest strength and group 3 had lowest strength, in using Mono-$Lok^2$ the group 2 and had higher strength than group 1 and in using Super C Ortho after applying Fluorobond shear bond strength decreased constantly, 3. The failure sites were tooth-resin interface in Super C Ortho after applying Fluorobond, Mono $Lok^2$ and Transbond and were at almost same ratio bracket base-resin interface and tooth-resin interface in Super C Orth.

  • PDF

REINFORCEMENT OF ACRYLIC RESIN WITH METAL WIRE (금속 wire의 아크릴릭 레진 보강효과에 관한 연구)

  • Jeong, Chang-Mo;Jeon, Young-Chan;Lim, Chang-Sup
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.823-832
    • /
    • 1996
  • The purpose of this study was to assess the effect of 1) the diameter(0.7,1.0,1.2mm) and number(1,2,3) of commonly available orthodontic metal wires embedded in self-curing orthodontic acrylic resin specimens($64{\times}10{\times}3mm$) and 2) the use of chemical adhesive system(Silicoater, Metalprimer) to prevent slipping at the interface between the resin and the metal wire on reinforcement by using three-point bending test. From this study, the following results were obtained. 1. No statistically significant difference was found among the transverse strengths for the control without reinforcement, one 0.7mm wire, two 0.7mm wires, three 0.7mm wires, and one 1.0mm wire groups(P>.05). 2. In the groups with 1.0 or 1.2mm wires, the transverse strength increased in proportion to the increase of number of wires(P<.05). 3. In the groups with 0.7 or 1.0mm wires, neither of Silicoater and Netalprimer increased the transverse strength significantly(P>.05). 4. No statistically significant difference was found in transverse strength between Silicoater groups and Metalprimer groups with same diameter of wires(P.>05). From these result, it is concluded that diameter of wires is a primary considering factor to reinforce the acrylic resin effectively and, when this requirement is satisfied, increased number of wires or chemical adhesive systems can be expected to produce the additional reinforcing effect.

  • PDF

Bracket bonding to polymethylmethacrylate-based materials for computer-aided design/manufacture of temporary restorations: Influence of mechanical treatment and chemical treatment with universal adhesives

  • Goracci, Cecilia;Ozcan, Mutlu;Franchi, Lorenzo;Di Bello, Giuseppe;Louca, Chris;Vichi, Alessandro
    • The korean journal of orthodontics
    • /
    • v.49 no.6
    • /
    • pp.404-412
    • /
    • 2019
  • Objective: To assess shear bond strength and failure mode (Adhesive Remnant Index, ARI) of orthodontic brackets bonded to polymethylmethacrylate (PMMA) blocks for computer-aided design/manufacture (CAD/CAM) fabrication of temporary restorations, following substrate chemical or mechanical treatment. Methods: Two types of PMMA blocks were tested: $CAD-Temp^{(R)}$ (VITA) and $Telio^{(R)}$ CAD (Ivoclar-Vivadent). The substrate was roughened with 320-grit sandpaper, simulating a fine-grit diamond bur. Two universal adhesives, Scotchbond Universal Adhesive (SU) and Assure Plus (AP), and a conventional adhesive, Transbond XT Primer (XTP; control), were used in combination with Transbond XT Paste to bond the brackets. Six experimental groups were formed: (1) $CAD-Temp^{(R)}/SU$; (2) $CAD-Temp^{(R)}/AP$; (3) $CAD-Temp^{(R)}/XTP$; (4) $Telio^{(R)}$ CAD/SU; (5) $Telio^{(R)}$ CAD/AP; (6) $Telio^{(R)}$ CAD/XTP. Shear bond strength and ARI were assessed. On 1 extra block for each PMMA-based material surfaces were roughened with 180-grit sandpaper, simulating a normal/medium-grit ($100{\mu}m$) diamond bur, and brackets were bonded. Shear bond strengths and ARI scores were compared with those of groups 3, 6. Results: On $CAD-Temp^{(R)}$ significantly higher bracket bond strengths than on $Telio^{(R)}$ CAD were recorded. With XTP significantly lower levels of adhesion were reached than using SU or AP. Roughening with a coarser bur resulted in a significant increase in adhesion. Conclusions: Bracket bonding to CAD/CAM PMMA can be promoted by grinding the substrate with a normal/medium-grit bur or by coating the intact surface with universal adhesives. With appropriate pretreatments, bracket adhesion to CAD/CAM PMMA temporary restorations can be enhanced to clinically satisfactory levels.

Shear bond strength between gold alloy and orthodontic metal bracket using light emitting diode curing light (Light emitting diode를 이용한 광중합 시 금합금과 교정용 금속 브라켓의 전단접착강도)

  • Jung, Min-Ho;Chung, Shin-Hye;Shon, Won-Jun
    • The korean journal of orthodontics
    • /
    • v.40 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • Objective: The need to bond orthodontic brackets onto various alloys has increased because of the increasing demand for adult orthodontic treatment. This study tried to evaluate the shear bond strength between gold alloy and metal bracket using light emitting diode (LED) light curing after metal primer and silicoating surface conditioning. Methods: Half of the type III gold alloy plates were treated with sandblasting with aluminum oxide and metal primer containing 4-META. the other half were treated with silica and silane. Metal brackets were bonded with Transbond XT light curing adhesive on these plates and shear bond strength were evaluated 1 hour, 6 hours, and 24 hours later. The differences of shear bond strength between groups were evaluated with two-way ANOVA. Results: The results showed higher bond strength in the silicoating group and a tendency of bond strength increase over time. Conclusions: When using LED curing lights for metal bracket bonding to alloy surfaces, long curing time and silicoating can produce a reliable bonding strength.

A Change of Shear Bond Strength of Orthodontic Resin Adhesives under Water Immersion (침수후 시간에 따른 교정용 레진접착제의 전단결합강도 변화)

  • Lee, Je-Jun;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.28 no.5 s.70
    • /
    • pp.783-789
    • /
    • 1998
  • The purpose of this study was to evaluate the changes of shear bond strengths and failure patterns in orthodontic resin adhesives according to the water immersion time. Metal brackets were bonded to the specimens involving the premolars with chemical-cured($Concise^{\circledR}$) and light-cured($Transbond^{\circledR}$) adhesives. The shear bond strength was measured on universal testing machine and the failure patterns were assessed with the adhesive remnant index(ARI) after storage in distilled water at $37^{\circ}C$ for 1 day, 1 week and 1, 3, and 6 months, respectively. The results were as follows. 1. The shear bond strengths at the 6 month in both Concise and Transbond were significantly higher than those at the 1 day, 1 week and 1 month(p<0.05). There were positive correlations between shear bond strength and water immersion time in both Concise and Transbond(P<0.01). 2. There were no significant differences in shear bond strength between Concise and Transbond. 3. The brackets were failed primarily at the bracket base-adhesive interface and there was no significant difference in the incidence of ARI scores according to the water immersion time.

  • PDF

Tensile Bond Strength of Glass Ionomer Cements (글라스 아이오노대 시멘트의 인장접착강도)

  • BYUN, Seung Min;KWON, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.26 no.3
    • /
    • pp.317-324
    • /
    • 1996
  • This study was conducted to evaluate the tensile bond strength of three commercially available glass ionomer cements as orthodontic bracket adhesives. 120 premolars extracted for orthodontic treatment were prepared for bonding and standard edgewise brackets were bonded with Shofu Glaslonomer Cement (Shofu Co., U.S.A.), GC Fuji ItGC Co., Japan), KETAC-CEM(ESPE Co., West Germany) with different P/L ratio. The tensile bond strength was tested by Instron testing device after 24hours and 3months from bonding. After debracketing, bracket bases were examined to determine the failure sites. The results of this study were as follows: 1. KETAC CEM showed the highest bond strength other than measurement after 24 hours and at its original P/L ratio, and seemed to have clinically a proper bond strength. It seemed, however, that both Shofu Giaslonomer Cement and GC Fuji I had an inappropriate bond strength. 2. The incorporation of additional powder into the mixture improved the tensile bond strength. 3. Prolonged storage time improved the tensile bond strength. 4. Of the failure, failure occured at the tooth-adhesive interface(54.2%) was the most common type. The second type of failure(36.7%) was combination type, where part of the adhesive remained on the tooth and part on the bracket. And the last type of failure(9.1%) occured at the adhesive-bracket interface.

  • PDF

Effect of metal primer and thermocycling on shear bonding strength between the orthodontic bracket and gold alloy (치과용 금합금에 대한 금속 프라이머 처리와 열순환 처리가 교정용 브라켓의 전단결합강도에 미치는 영향)

  • Lee, Young-Kee;Cha, Jung-Yul;Yu, Hyung-Seog;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.39 no.5
    • /
    • pp.320-329
    • /
    • 2009
  • Objective: The aim of this study was to evaluate the effect of metal primers and thermocycling on shear bond strength between the orthodontic bracket and gold alloy. Methods: For this study, 80 specimens made of dental gold alloy were divided into 8 groups based on the combination of metal primers (none, Alloy primer, Metaltite, V-primer) and thermocycling (with and without thermocycling). Shear bond strength testing was performed with a universal testing machine. Bond failure sites were classified by a modified ARI (Adhesive Remnant Index) score. Results: All metal primer treated groups showed a significantly higher shear bond strength than the only sandblasting treated group without thermocycling (p < 0.05). There were no significant differences on shear bond strength in the groups with thermocycling (p > 0.05). Bond failure sites of the metal primer treated group without thermocycling occurred at gold alloy/adhesive interface, whereas there were no differences on bonding failure sites in the groups with thermocycling. Conclusions: These findings suggest that using metal primer on gold alloy enhances the initial bracket bond strength. But, this effect was not shown with thermocycling.

Effects of a new desensitizing paste containing 8% arginine and calcium carbonate on the shear bond strength of orthodontic brackets

  • Yagci, Ahmet;Uysal, Tancan;Akinci, Hatice;Uysal, Banu
    • The korean journal of orthodontics
    • /
    • v.41 no.2
    • /
    • pp.121-126
    • /
    • 2011
  • Objective: The purpose of this study was to evaluate shear bond strength (SBS) and failure site location of brackets bonded to enamel with or without desensitizer application. Methods: Sixty-six freshly extracted human premolar teeth were randomly divided into 3 groups of 22. Group 1 served as the control. Desensitizer was applied to the remaining teeth at two time intervals (Group 2, bonded immediately after Pro-$Relief^{TM}$ (Colgate-Palmolive Co., New York, NY, USA) application and Group 3, bonded 30 days after Pro-$Relief^{TM}$ application with the teeth stored in artificial saliva during the 30 days). Orthodontic brackets were bonded with a light cure composite resin and cured with a halogen light. After bonding, the SBS of the brackets was tested using a universal testing device. Adhesive remnant index (ARI) scores were determined after the brackets failed. Data were analyzed with analysis of variance, Tukey's HSD, and G tests. Results: The SBS was significantly lower in Group 2 than in Groups 1 (p = 0.024) and 3 (p = 0.017). Groups 1 and Group 3 did not differ (p = 0.991). ARI scores did not differ significantly among groups. Conclusions: The Pro-$Relief^{TM}$ desensitizer agent applied immediately before bonding significantly reduces bond strength, but the SBS values still exceed the minimum 5.9 - 7.8 MPa required for adequate clinical performance. Immersing the teeth in artificial saliva for 30 days after applying the Pro-$Relief^{TM}$ desensitizer agent and before bonding increased the SBS to control levels.

A STUDY OF SHEAR BOND STRENGTH OF ORTHODONTIC BRACKET UNDER BLOOD-CONTAMINATED CONDITIONS (혈액 오염 환경 하에서 접착된 교정용 브라켓의 전단 강도에 관한 연구)

  • Shin, Ji-Sun;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.191-199
    • /
    • 2005
  • This study was experienced in order to obtain the shear bond strength of orthodontic bracket adhesives under the blood contamination that can be occurred during the procedure of bracket bonding under window opening surgery. As a result of this study, shear bond strength of all glass ionomer groups were lower than resin cement groups. However, the strength of uncontaminated and post-contaminated group of glass ionomer was strong enough to perform an orthodontic forced eruption. This study revealed that during a window opening surgery, glass ionomer without etching procedure is available in order to bond a bracket if surface of teeth is not pre-contaminated by blood before the adhesive application. Both simple procedure and less adhesives remnant after bonding failure could make light-cured glass ionomer cement the ultimate choice for racket bonding.

  • PDF

The shear bond strength and adhesive failure pattern in bracket bonding with different light-curing methods (브라켓 접착시 광중합방식에 따른 전단결합강도와 파절양상 비교)

  • Shin, Jai-Ho;Lim, Yong-Kyu;Lee, Dong-Yul
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.333-342
    • /
    • 2004
  • The purpose of this study was to evaluate the clinical effectiveness of a plasma arc light and light emitting diode (LED), compared with shear bond strength and the failure pattern of brackets bonded with visible light in direct bonding. Brackets were bonded with Transbond XT to 60 human premolars embedded in the resin blocks according to different light-curing methods. Then, the shear bond strength of each group was measured using a universal testing machine (Instron) and the adhesive failure pattern after debonding was visually examined by light microscope. The results were as follows: 1. The shear bond strength showed no significant difference between the visible light and light emitting diode, but the plasma arc light exhibited a significantly lower shear bond strength compared with the visible light and light emitting diode. 2. In the visible light and light emitting diode, adhesive failure patterns were similar. Bond failure occurred more frequently at the enamel-adhesive interface. 3. The bonding failure of brackets bonded with plasma arc light occurred more frequently at the bracket-adhesive interface. The results of this study suggest that plasma arc light, light emitting diode and visible light are all clinically useful in the direct bonding of orthodontic brackets.