• Title/Summary/Keyword: Ortho-para hydrogen spin conversion

Search Result 2, Processing Time 0.016 seconds

A Study on the Ortho-para Hydrogen Conversion Characteristics of Liquefied Hydrogen by Perovskite Catalysts (페로브스카이트 촉매에 의한 액화수소의 올소-파라 수소변환특성에 관한 연구)

  • Nah, In Wook;Kim, Jung Hyun;Das, Taraknath;Kwon, Soon-Cheol;Oh, In-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • During the liquefaction of hydrogen, the ortho hydrogen is converted into the para form with heat release that evaporates the liquefied hydrogen into the gaseous one backwards. The ortho-para conversion catalysts are usually used during liquefaction to avoid such boil-off. In order to compare and analyze the performance of the ortho-para hydrogen conversion catalysts, in-situ FT-IR device was designed and manufactured to measure the para hydrogen conversion rate in real-time. $LaFeO_3$ and $La_{0.7}Sr_{0.3}Cu_{0.3}Fe_{0.7}O_3$ perovskite catalysts were prepared by the citrate sol-gel method and their spin conversion characteristics from ortho to para hydrogen were investigated by in-situ FTIR spectroscopy at 17K. It was found that the spin conversion was affected by surface area, particle size, and crystallite size of the catalysts. Thus, the $La_{0.7}Sr_{0.3}Cu_{0.3}Fe_{0.7}O_3$ perovskite catalyst that had higher surface area, higher crystallite size, and smaller particle size than $LaFeO_3$ showed the better spin conversion property of 32.3% at 17K in 120min interaction with the perovskite catalysts.

Improved high-performance La0.7Sr0.3MxFe1-xO3 (M = Cu, Cr, Ni) perovskite catalysts for ortho-para hydrogen spin conversion

  • Choi, Jeong-Gil;Choi, Euiji;Kweon, Soon-Cheol;Oh, In-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.44-50
    • /
    • 2018
  • The improved high-performance Fe-based perovskite-type oxides ($La_{0.7}Sr_{0.3}M_xFe_{1-x}O_3$, M = Cu, Cr, Ni) were synthesized by a citrate method and characterized by SEM, EDS, XRD and NMR spectroscopy analyses. The characterization analyses revealed that the stoichiometric amounts of lattice oxygen were existed in all of perovskite samples except for a nickel-doped perovskite. Fe-based perovskites exhibited a surprising result for ortho-para $H_2$ spin conversion reaction, indicating two orders of magnitude higher conversions and conversion rates than commercial $Fe_2O_3$. It was considered that this conversion difference might be attributed to the presence of oxygen vacancies in Fe-based perovskites prepared in this study.