• Title/Summary/Keyword: Ortho-Para

Search Result 94, Processing Time 0.029 seconds

Influence of Ligand on Oxidation of Cyclohexane in the Biomimetic System (생체모방계에 의한 시클로헥산 산화반응에서 리간드의 영향)

  • Kim, Seong-Bo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.202-205
    • /
    • 2005
  • The effects of ligands on reactivity under GoAgg oxidation system have been studied. Picolinic acid containing carboxylic acid showed the most excellent activity among various ligands. Also, Picolinic acid of ortho position carboxylic group in pyridine ring largely increased reaction rates in the GoAgg oxidation systems. From these results, we proposed the new mechanism on the GoAgg oxidation using ligands having carboxylic group at ortho position.

Thermodynamic Analysis of a Hydrogen Liquefaction Process for a Hydrogen Liquefaction Pilot Plant with a Small Capacity (소용량 수소액화 파일럿 플랜트 구축을 위한 공정의 열역학 해석)

  • KIM, TAEHOON;CHOI, BYUNG-IL;HAN, YONG-SHIK;DO, KYU HYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • The present study discussed the thermodynamic analysis of the hydrogen liquefaction process to build a hydrogen liquefaction pilot plant with a small capacity (0.5 ton/day). A 2-stage Brayton cycle utilizing LNG/LN2 cold energy was suggested to be built in Korea for the hydrogen liquefaction pilot plant with a small capacity. Thermodynamic analysis on the effect of various variables on the efficiency of hydrogen liquefaction process was performed. As a result, the CASE in which the ortho-para conversion catalyst was infiltrated inside the heat exchanger showed the best process efficiency. Finally, thermodynamic analysis was performed on the effect of turbo expander compression ratio on the hydrogen liquefaction process and it was confirmed that an optimal turbo expander compression ratio exists.

Design and Analysis for Hydrogen Liquefaction Process Using LNG Cold Energy (LNG냉열이용 수소액화 공정해석 및 설계)

  • Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • For the hydrogen liquefaction, the large amount of energy is consumed, because precooling, liquefaction and ortho/para conversion heats should be eliminated. In this paper the basic design and thermal analysis are carried out to reduce the energy consumption by using LNG cold energy for precooling process in hydrogen liquefaction processes. The LNG cold energy utilization for hydrogen precooling enables not only to get energy saving for liquefaction, but to recover the wasted cold energy to sea water at the LNG terminal. The results show that the energy saving rate for liquefaction using LNG cold energy is almost 75% of current industrial hydrogen liquefaction plant. The demand flow-rate of LNG is only 15T/D for 1T/D hydrogen liquefaction.

Basic design of hydrogen liquefier precooled by cryogenic refirgerator (극저온냉동기 예냉 수소액화기의 기초설계)

  • Kim, S.H.;Chang, H.M.;Kang, B.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.389-400
    • /
    • 1997
  • A thermodynamic cycle analysis is performed for refrigerator-precooled Linde-Hampson hydrogen liquefiers, including catalysts for the ortho-to-para(o-p) conversion. three different configurations of the liquefying system, depending upon the method of the o-p conversion, are selected for the analysis. After some simple and justifiable models are introduced, a general analysis program to predict the liquid yield and the figure of merit(FOM) is developed with incorporating the commercial computer code for the hydrogen properties. The discussion is focused on the effect of the two primary design parameters-the precooling temperature and the high pressrure of hydrogen. When the precooling temperature is in the range between 45 and 60 K, the optimal high pressure for the maximal liquid yield is found to be in the range between 100 to 140 bar, regardless of the o-p conversion. However, the FOM can be maximized at slightly smaller values of high pressures. It is remarkable to observe that the lower precooling temperatures are favorable since both the liquid yield and the FOM can be obtained without compressing hygrogen to extremely high pressures.

  • PDF

Shocked $H_2$ Gas with Non-equilibrium Ortho-to-Para Ratios Observed from Two Supernova Remnants IC 443 and HB 21

  • Shinn, Jong-Ho;Koo, Bon-Chul;Lee, Ho-Gyu;Moon, Dae-Sik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • We present the near-infrared spectra (2.5-5.0 um) of shocked $H_2$ gas, observed with the InfraRed Camera onboard the satellite AKARI. Two supernova remnants, IC 443 and HB 21, were observed, and they all showed the ortho-to-para ratios (OPRs) of less than 3.0: 2.1-2.2 for IC 443 and 1.6-1.8 for HB 21. These non-equilibrium OPRs are first reported at E(v,J) > 7000 K, as far as we are aware of. Based on our previous study, we try to interpret that the non-equilibrium OPRs originate from dissociative J-shocks. Dissociative J-shocks mainly generate infrared H2 emissions from their $H_2$ reformation zone, and the OPR of 3.0 are expected for the reformed $H_2$ from the theoretical study. This is contradictory to our observational results. We propose other possible origins of the non-equilibrium OPRs, such as, abnormal $H_2$ reformation, partially dissociative J-shocks, etc.

  • PDF

Ortho-to-Para Ratio Studies of Shocked $H_2$ Gas Observed from Two Supernova Remnants IC 443 and HB 21

  • Shinn, Jong-Ho;Lee, Ho-Gyu;Moon, Dae-Sik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2013
  • We present the near-infrared spectra (2.5-5.0 um) of shocked $H_2$ gas, observed with the Infrared Camera onboard the satellite AKARI. Two supernova remnants, IC 443 and HB 21, were observed. IC 443 shows a hint of non-equilibrium ortho-to-para ratio (OPR): 2.4 (-0.2, +0.3). HB 21 also shows an indication of a potential non-equilibrium OPR: 1.8-2.0. These non-equilibrium OPRs are first reported for shocked $H_2$ gas at E(v,J) > 7000 K, as far as we are aware. We concluded that the non-equilibrium OPR probably originates from dissociative J-shocks, considering several factors such as the shock combination requirement, the line ratios, and the possibility that $H_2$ gas can form on grains with a non-equilibrium OPR. The difference in the collision energy of H atoms on grain surfaces would give rise to the observed difference between the OPRs of IC 443 and HB 21, if dissociative J-shocks are responsible for the $H_2$ emission. Our study suggests that shocked-then-cooled $H_2$ gas may play as a heat reservoir with the non-equilibrium OPR.

  • PDF

Structural and Conformational Studies of ortho-, meta-, and para-Methyl Red upon Proton Gain and Loss

  • Park, Sun-Kyung;Lee, Choong-Keun;Min, Kyung-Chul;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1170-1176
    • /
    • 2005
  • The structures and conformations of ortho-, meta-, and para-methyl red (MR) upon proton gain and loss were studied by density functional calculations, and compared to methyl yellow for the effects of a carboxyl substitution. Internal hydrogen bonding causes the geometry of neutral o-MR planar, otherwise twist. Monoprotonated species of MR are planar where the proton is attached to $\beta$-azo nitrogen. This loses its azo character a bit, and shows strong delocalization characterized as a quinonoid canonical structure. Di-protonated species of MR is proved to hold two protons at the amino and $\alpha$-azo nitrogen atoms, and planar. It regains somewhat of its azo character, but still shows fairly delocalized property in terms of carbocationic canonical structures. The carboxyl substitution on 4-dimethylamino-trans-azobenzene structure has some delocalization effects on the geometry or conformation of MR derivatives whether neutral, mono-, di- or de-protonated.

Minimum Structural Requirements of R-phenoxy Substituents for Herbicidal Evaluation of O-(2-phenoxy)ethyl-N-aralkylcarbamate Analogues against Phytoene Desaturase (Phytoene Desaturase에 대한 O-(2-Phenoxy)ethyl-N-aralkylcarbamates 유도체의 제초성 평가를 위한 R-phenoxy 치환기들의 구조적인 요건)

  • Choi, Won-Seok;Lee, Jae-Whang;Hwang, Seung-Woo;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.1
    • /
    • pp.72-77
    • /
    • 2010
  • The minimum structural requirements of R-phenoxy substituents for herbicidal evaluation of O-(2-(R)-phenoxy)-ethyl-N-aralkylcarbamate (1-15) analogues against phytoene desaturase (PDS) based on the three dimensional quantitative structure-activity relationships (3D-QSARs: CoMFA and CoMSIA) were studied quantitatively. The correlativity and predictability ($r^2_{cv.}=0.753$ and $r^2_{ncv.}=0.964$) of the CoMFA 1 model were higher than those of the rest models. The PDS inhibitory activities from the optimized CoMFA 1 model were depend upon the steric field (44.0%), electrostatic field (36.3%), and hydrophobic field (19.6%) of O-(2-(R)-phenoxy)ethyl-Naralkylcarbamate analogues. From the CoMFA contour maps on the structure of the most active compound (5), if it has the steric favor at meta-, para-position on the phenoxy ring, the negative charge favor in meta-position and positive charge favor in the outside part of para-position, the inhibitory activity will be predicted to increase. Also, if ortho-, para-position, and outside of phenoxy ring are hydrophilic favor, and meta-position is hydrophobic favor, it is predicted that the inhibitory activity against PDS will be able to increase.

Synthesis of Dihydroxylated Chalcone Derivatives with Diverse Substitution Patterns and Their Radical Scavenging Ability toward DPPH Free Radicals

  • Kim, Beom-Tae;O, Kwang-Joong;Chun, Jae-Chul;Hwang, Ki-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1125-1130
    • /
    • 2008
  • A series of dihydroxylated chalcone derivatives with diverse substitution patterns on a phenyl ring B and the para-substituents on a phenyl ring A were prepared, and their radical scavenging activities were evaluated by simple DPPH test to determine quantitative structure-activity relationship in these series of compounds. The chalcone compounds with the ortho- (i.e. 2',3'- and 3',4'-) and para- (i.e. 2,5'-) substitution patterns show an excellent antioxidant activities (80-90% of control at the concentration of 50 $\mu$M) which are comparable to those of ascorbic acid and $\alpha$ -tocopherol as positive reference materials. On the contrary, the compounds with meta- (i.e. 2',4'-, 3',5'-) substitution pattern demonstrate very dramatic decrease in activities which are around 25% of the control even at the concentration of 200 $\mu$ M (IC50 > 200 $\mu$ M). These dramatic differences could be interpreted in terms of the ease formation of fairly stable semiquinone radicals from the ortho- and parasubstituted chalcone molecules through facilitating electron delocalization. Our results indicate that the substitution patterns of two hydroxyl groups on ring B are very important structural factors for their radical scavenging activity enhancement. Meanwhile, the substituents at para-position of the phenyl ring A of chalcones have no influence on the activity.

A DFT Study on the Polarizability of Di-substituted Arene (o-, m-, p-) Molecules used as Supercharging Reagents during Electrospray Ionization Mass Spectrometry

  • Abaye, Daniel A.;Aniagyei, Albert;Adedia, David;Nielsen, Birthe V.;Opoku, Francis
    • Mass Spectrometry Letters
    • /
    • v.13 no.3
    • /
    • pp.49-57
    • /
    • 2022
  • During electrospray ionization mass spectrometry (ESI-MS) analysis of proteins, the addition of supercharging agents allows for adjusting the maximal charge state, affecting the charge state distribution, and increases the number of ions reaching the detector thus, improving signal detection. We postulate that in di-substituted arene isomers, molecules with higher polarizability values should generate greater interactions and hence elicit higher signal intensities. Polarizability is an electronic parameter which has been demonstrated to predict many chemical interactions. Many properties can be predicted based on charge polarization. Molecular polarizability is a vital descriptor for explaining intermolecular interactions. We employed DFT (density functional/Hartree-Fock hybrid model, B3LYP)-derived descriptors and computed molecular polarizability for ten disubstituted arene reagents, each set made up of three (ortho, meta, para) isomers, with reported use as supercharging reagents during ESI experiments. The atomic electronic inputs were ionization potential (IP), electron affinity (EA), electronegativity (𝛘), hardness (η), chemical potential (µ), and dipole moment (D). We determined that the para isomers showed the highest polarizability values in nine of the ten sets. There was no difference between the ortho and meta isomers. Polarizability also increased with increasing complexity of the substituents on the benzene ring. Polarizability correlated positively with IP, EA, 𝛘, η, and D but correlated negatively with chemical potential. This DFT study predicts that the para isomers of di-substituted arene isomers should elicit the strongest ESI responses. An experimental comparison of the three isomers, especially of larger supercharging molecules, could be carried out to establish this premise.