• 제목/요약/키워드: Orifice plate

검색결과 50건 처리시간 0.026초

개선형 ISPM에서 공기역학적 렌즈의 최적조건에 대한 실험적 연구 (An Experimental Study on Optimal Condition of Aerodynamic Lens in the Modified ISPM)

  • 임효재;차옥환;설용태
    • 반도체디스플레이기술학회지
    • /
    • 제3권2호
    • /
    • pp.1-4
    • /
    • 2004
  • An experimental study was conducted on the optimal configuration and size of ADFL(Aerodynamic Focusing Lens) which used in modified ISPM(In-Situ Particle Monitoring). The particle counting efficiency has been known as a function of distance and size of ADFL, thus we varied these parameters to find out the optimum values. From a result of experiment, it was found that two lenses and 6mm space between them showed a maximum particle measuring efficiency. To apply this modified ISPM to semiconductor manufacturing field, we need more experiment about the pressure change, flow rate, and input particle size.

  • PDF

$k-{\varepsilon}-\bar{\upsilon{'}^2}$모델을 이용한 경사진 충돌제트의 유동 및 열전달 특성에 대한 수치해석적 연구 (A Numerical Study on Flow and Heat Transfer Characteristics for an Oblique Impingement Jet Using $k-{\varepsilon}-\bar{\upsilon{'}^2}$ Model)

  • 최영기;최봉준;이정희
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1183-1192
    • /
    • 2001
  • The numerical simulation has been conducted for the investigation of flow and heat transfer characteristics of an oblique impingement jet injected to a flat plate. The finite volume method was used to discretize the governing equations based on the non-orthogonal coordinate with non-staggered variable arrangement. The $textsc{k}$-$\varepsilon$-ν(sup)'2 turbulence model was employed to consider the consider the anisotropic flow characteristics generated by the impingement jet flow. The predicted results were compared with the experimental data and those of the standard $textsc{k}$-$\varepsilon$ turbulence model. The results of the $textsc{k}$-$\varepsilon$-ν(sup)'2 model showed better agreement with the experimental data than those of the standard $textsc{k}$-$\varepsilon$ model. In order to get the optimum condition, the flow and temperature fields were calculated with a variation of inclined angle($\alpha$=30$^{\circ}$~90$^{\circ}$) and the distance between the jet exit and impingement plate-to-diameter (L/D=4~10) at a fixed Reynolds number(Re=20,000). For a small L/D, the near-peak Nusselt numbers were not significantly effected by the inclined angle. The near-peak Nusselt numbers were not significantly affected by the L/D in the case of a large $\alpha$. The overall shape of the local Nusselt numbers was influenced by both the jet orifice-to-plate spacing and the jet angle.

Uniform large scale cohesionless soil sample preparation using mobile pluviator

  • Jamil, Irfan;Ahmad, Irshad;Ullah, Wali;Junaid, Muhammad;Khan, Shahid Ali
    • Geomechanics and Engineering
    • /
    • 제28권5호
    • /
    • pp.521-529
    • /
    • 2022
  • This research work deals with the development of air pluviation method for preparing uniform sand specimens for conducting large scale laboratory testing. Simulating real field conditions and to get reliable results, air pluviation method is highly desirable. This paper presents a special technique called air pluviation or sand raining technique for achieving uniform relative density. The apparatus is accompanied by a hopper, shutters with different orifice sizes and numbers and set of sieves. Before using this apparatus, calibration curves are drawn for relative density against different height of fall (H) and shutter sizes. From these calibration curves, corresponding to the desired relative density of 60%, the shutter size of 13mm and height of fall of 457.2 mm, are selected and maintained throughout the pluviation process. The density obtained from the mobile pluviator is then verified using the Dynamic Cone Penetrometer (DCP) test where the soil is poured in the box using defined shutter size and fall height. The results obtained from the DCP test are averaged as 60±0.5 which was desirable. The mobile pluviator used in this research is also capable of obtaining relative densities up to 90%. The instrument is validated using experimental and numerical approach. In numerical study, Plaxis 3D software is used in which the soil mass is defined by 10-Node tetrahedral elements and 6-Node plate is used to simulate plate behavior in the validation phase. The results obtained from numerical approach were compared with that of experimental one which showed very close correlation.

기체주입노즐의 내부유동양식의 구분 (Identification of Internal Flow Pattern in Effervescent Atomizers)

  • 김주연;이상용
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.306-315
    • /
    • 2000
  • An experimental study was conducted to examine the internal flow patterns inside the mixing chamber of effervescent atomizers. The mixing chamber has the rectangular cross section ($8mm{\times}2mm$) and made of transparent acrylic plate for flow visualization. The parameters tested were the air/liquid ratio (ALR), injection. pressure, and the nozzle orifice diameter. Three different flow regimes were observed; bubbly, annular, and intermittent flows. In the bubbly flow regime, the discharged mixture was disintegrated into drops through the bubble expansion and the ligament breakup. On the other hand, in the annular flow regime, the liquid annulus was disintegrated into small drops by the aerodynamic interaction between the phases due to the high relative velocities between the gas and the liquid. In the intermittent flow regime, the bubble-expansion/ligament-disintegration mode and the annulus-disintegration mode appeared alternatively. The correlations representing the transition criteria between the two-phase flow patterns within the mixing chamber were proposed based on the drift-flux models.

대기 에어로졸 측정용 3단 임팩터의 설계 및 성능평가 (Design and Performance Evaluation of a Three Stage Impactor)

  • 지준호;배귀남;황정호
    • 한국대기환경학회지
    • /
    • 제17권6호
    • /
    • pp.441-450
    • /
    • 2001
  • A three stage impactor with the cutoff diameters of 1, 2.5, and 10$\mu\textrm{m}$ in aerodynamic diameter was developed and tested. The gravimetric method and the particle counting method were utilized to evaluate the collection performance of each stage. A vibrating orifice aerosol generator was employed to generate monodisperse test aerosols larger that 2$\mu\textrm{m}$ in diameter. Polystyrene latex (PSL) particles smaller than 2$\mu\textrm{m}$ in diameter were generated by an atomizer and the particle number concentration was measured by an Aerodynamic Particle Sizer Spectrometer. The experimental cutoff diameters obtained from the particle collection efficiency curves are in good agreement with the designed values. The square roots of Stokes number at 50% collection efficiency for stage 1, 2, and 3 are 0.42, 0.48, and 0.45, respectively. Effects of the particle bounce and the impaction plate on the collection efficiency were investigated. The collection efficiency curves including effect of the particle bounce were also compared with those of the MOUDI cascade impactor.

  • PDF

저공해형 촉매연소식 소형 콘덴싱보일러 개발 (Development of the Catalytic Combustion Condensing Boiler of Lower Emission Type for Domestic Use)

  • 김호연;이승호;조원일;백영순
    • 한국가스학회지
    • /
    • 제5권1호
    • /
    • pp.45-51
    • /
    • 2001
  • 촉매연소는 근래 들어 산업용 및 가정용의 다양한 분야에 적용되고 있는 환경친화적인 기술로서 본 연구는 고온용 촉매제조기술과 촉매연소기 개발을 중점적으로 수행하여 이를 상용화된 콘덴싱 보일러에 적용하는 데 그 목표를 두었다. 고온용 촉매로는 귀금속 팔라듐(Pd)을 사용하여 담체인 알루미나$(Al_{2}O_{3})$와 지르코니아$(ZTO_{2})$에 일정 중량비로 담지하였고, 천연가스 연소시 촉매의 활성을 비긴 분석하였다. 그 결과 $Pd/Al_{2}O_{3}\;=\;4$가 활성이나 내구성에서 우수한 것으로 나타났다. 그리고 기존의 콘덴싱 보일러에 적용되고 있는 판형 연소기(Plate-type combustor)를 시험모델로 촉매성능 및 연소성능을 파악하였고, 이를 토대로 연소면적을 증가시킨 원통형 촉매연소기(Cylindrical-type catalyst combustor)를 개발하였다. 또한, 원통형 촉매연소기를 적용한 콘덴싱 보일러의 촉매연소 성능실험을 통하여 결정한 노즐 5.95mm와 오리피스 21mm로 최적의 연소상태를 갖는 25,000 kcal/hr 촉매연소식 콘덴싱 보일러를 개발하였다.

  • PDF

배추 용수량에 관한 연구 (Study on The Water Requirements of Chinese Cabbage.)

  • 김현철;정두호
    • 한국농공학회지
    • /
    • 제16권2호
    • /
    • pp.3430-3437
    • /
    • 1974
  • .It is very importaut to know the water consumption of crops in planning irrigation works and practicing suitable soil moisture management. For the purpose of making it clear that how much water be consumed to cultivate the Chinese cabbage, Chamber method has been applied. Main equipments in the transpiration chamber are flowers, manometer and electric thermograph. The chamber made of vynyl plate has a small entrance at the base and an exit at the top, and the ventilation in the chamber was carried out by a flower through the entrance and exit. Air-flow adjusted by an orifice manometer enters the chamber from the outside over the crop canopy through the pipe like a chimney and finally goes out to the outside. Two sets which consist of a pair of dry and wet bulb made by thermistor are installed in the entrance and exit tube, and record air temperature automatically. Evapotranspiration amount is computed from the air-flow quantity and difference in absolute humidity between at the entrance and exit of the chamber by the following equation: ET=(X2-X1)${\times}$Q where ET=evapotranspiration amount X1=absolute humidity at the entrance(g/㎥) X2=absolute humidity at the exit(g/㎥) Q=air-flow quantity(㎥) This study was carried out at the upland farm of the Institute of Agriculture Engimeering and Utilization, Suwon, Korea. from 1971 to 1973. The results obtained in this experiment are as follows: 1. The total amount of evapotranspiration of Chinese Cabbage that is cultivated in autumn is 408.1mm during growth period. 2. Chinese cabbage rapidly grows up in the second ten days of September, 40th to 50th days after seeding. At the same time, the maximum amount of evaportranspiration of Chinese cabbage is 61.6mm/10 days 3. The correlation between Pan-evaporation and evapotranspiration is high, coefficient of correlation r=0.88**, and can be shown as The following regression equation: ET=0.913E+20.273 4. Evapotranspiration is closely related with meteorological factors: r=0.85**, for insolation, r=0.76** for air temperature, respectively. 5. The percentage of evapotranspiration amount, at the beginning of growth stage, gradually increases in proportion as the Chinese Cabbage grows but is largely affected by meteorological factors after the green cover formation. 6. By Blaney and Griddle formula, evaportranspiration coefficient "K" are within from 0,85 to 1.27.

  • PDF

Doubled Thrust by Boundary Layer Control in Scramjet Engines in Mach 4 and 6

  • Mitani, Tohru;Sakuranaka, Noboru;Tomioka, Sadatake;Kobayashi, Kan;Kanda, Takeshi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.734-741
    • /
    • 2004
  • Boundary layer ingestion in airframe-integrated scramjet engines causes engine stall (“engine un start” hereafter) and restricts engine performance. To improve the unstart characteristics in engines, boundary layer bleed and a two-staged injection of fuel were examined in Mach 4 and Mach 6 engine tests. A boundary layer bleed system consisting of a porous plate, an air coolers, a metering orifice and an ON/OFF valve, was designed for each of the engines. First, a method to determine bleed rate requirements was developed. Porous plates were designed to suck air out of the Mach 4 engine at a rate of 200 g/s and out of the Mach 6 engine at a rate of 30 g/s. Air coolers were then optimized based on the bleed airflow rates. The exhaust air temperature could be cooled below 600 K in the porous plates and the compact air coolers. The Mach 4 engine tests showed that a small bleed rate of 3% doubled the engine operating range and thrust. With the assistance of two-staged fuel injection of H2, the engine operating range was extended to Ф0.95 and the maximum thrust was tripled to 2560 N. The Mach 6 tests showed that a bleed of 30 g/s (0.6% of captured air in the engine) extended the start limit from Ф0.48 to Ф1 to deliver a maximum thrust of 2460 N.

  • PDF

트윈스크롤 터보과급기에서 맥동유동의 질량유량 측정 (Mass Flow Rate Measurement of Pulsating Flow in a Twin-Scroll Turbocharger)

  • 정진은;전세훈
    • 한국산학기술학회논문지
    • /
    • 제20권12호
    • /
    • pp.723-729
    • /
    • 2019
  • 터보과급기는 엔진에 장착하여 연비를 개선하는 효과적인 장치로 디젤엔진과 가솔린엔진 모두에서 광범위하게 사용되고 있다. 본 연구에서는 승용차용 가솔린엔진에 사용되는 트윈스크롤 터보과급기에서 발생하는 맥동유동의 질량유량을 측정하였다. 자체 설계 제작한 맥동유동장치를 사용하여 맥동이 있는 비정상상태에서 유동의 질량유량을 측정하였고, 맥동이 없는 정상상태의 질량유량과 비교 분석하였다. 맥동유동장치는 회전하는 상판과 고정된 하판을 사용하여 변하는 엔진의 배기밸브 유효면적을 반영하였다. 맥동이 있는 비정상상태 질량유량을 측정하기 위하여 차압식 압력계를이용한 오리피스 유량계를 사용하였다. 이때 기체의 온도와 절대압력을 측정하여 기체 밀도 변화를 고려하였다. 터보과급기의 저속 성능을 분석하기 위하여 압축공기를 사용하여 터보과급기 회전속도 60,000rpm에서 100,000rpm의 범위에서 측정을 수행하였다. 비정상상태의 질량유량은 정상상태와 비교하여 크게 다른 결과를 보였다. 정상상태 질량유량 계수는 터빈 팽창비가 증가함에서 따라 증가하지만, 비정상상태 질량유량 계수는 정상상태 값 주변의 히스테리시스 루프를 형성하며 변화량은 정상유동 기준 최대 5.0배이다. 이것은 맥동유동에 의하여 터빈 볼류트 공간에서 충진과 방출이 일어나기 때문이다.

당용액비중조절에 의한 보통육과 혈합육의 분리에 관한 연구 (Separation of Dark and Ordinary Muscle with Specific Gravity Controlled Sugar Solutions)

  • 김우준;이강호
    • 한국수산과학회지
    • /
    • 제15권3호
    • /
    • pp.185-190
    • /
    • 1982
  • 다획성 어종인 고등어, 정어리, 말쥐치 등을 연제품 기타 식품소재로 이용하기 위해서는 다양처리를 위한 기계처리가 필요하나 적색육조에 많은 혈합육의 분리가 어려워 품질에 문제점이 있다. 기계처리적정에서 보통육과 혈합육을 분리하는 방법으로 당용액의 비중차에 의한 분리유과를 검토한 결과를 요약하면 다음과 같다. (1) 보통육과 혈합육을 분리할 수 있는 유효비중한계는 고등어의 경우 $1.067\sim1.072$, 정어리의 경우$1.02\sim1.070$ 말쥐치의 경우 $1.073\sim1.077$였다. (2) 육립자의 크기에 따른 분리율은 chopper 세공판의 공경이 0.2cm일 때에 $90\%$였고 0.3cm일 때에 $60\%$였다. (3) 육립자의 밀도에 따른 분리효과는 당용액에서의 침강력 높이가 1.8cm정도, 즉 육입자 밀도 $1g/cm^2$일 때 분리율이 $92\%$였고, 즉 $5g/cm^2$일 매에는 $59\%$로 낮았다. (4) 자당용액에서는 부상분리층이 25분 경과하여도 침강하지 않았으나 포도당액에서는 5분후부터 서서히 침강하였다. (5)당용액의 비중이 높아짐에 따라서 유지의 분리율 높았으며 유효비중한계내에서도 $90\%$정도의 지방을 분리할 수 있었다.

  • PDF