• Title/Summary/Keyword: Orifice Diameter Ratio

Search Result 86, Processing Time 0.022 seconds

An Experimental Study on the Control of Shock in the Hydraulic Actuator System Using the Orifice (오리피스를 이용한 유압 액추에이터의 충격치 제어특성에 관한 실험적 연구)

  • Lee, Ju-Seong;Lee, Gye-Bok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1506-1512
    • /
    • 2000
  • Control of shock may be important in the hydraulic system and necessary to avoid failure and to improve the efficiency of operation. This study addresses the design and use of an orifice to provide the desired control of the hydraulic actuator system. The experimental apparatus is an idealization of an automobile shift system. Control is accomplished by installing three different types of orifices at appropriate locations in the system. Experimental results show that the orifice can be used to obtain the control of shock and control level depends on the orifice size, orifice type, operating pressure and flow rate.

An Experimental Investigation of Side-Orifice Effects on Pressure Drop for Single-Phase Flow

  • Seo, Kyong-Won;Chun, Moon-Hyun;Nam, Ho-Yun;Park, Seok-Ki;Lee, Yong-Bum
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.295-300
    • /
    • 1996
  • To investigate the effects of the side-orifice on the pressure drop for single-phase flow, a series of experiments have been carried out with 16 different downstream test sections with various combinations of side-orifice shapes, different numbers of side-orifices, and different arrangements of the side-orifice using water as a working fluid. From the measurements of the pressure drop and the flow rate, the pressure loss coefficient of the side-orifice(s) has been evaluated. Based on the total number of 529 present data, an empirical correlation for the pressure loss coefficient has been developed in terms of Reynolds number and geometric parameters, such as area ratio, equivalent diameter, leading edge, and average width of side-orifice.

  • PDF

Three-Dimensional Flow Analysis for Estimation of Measuring Error oi Orifice Flowmeter due to Swirling Flow (선회로 인한 오리피스 유량계의 계량오차 예측을 위한 삼차원 유동해석)

  • Kim Hong-Min;Kim Kwang-Yong;Her Jae-Young;Ha Young-Chul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.79-82
    • /
    • 2002
  • Three-dimensional pipe flows with elbows and tees for few different pipe fittings are calculated to estimate the effect of swirling flow on measuring accuracy of orifice flow meter. It is evaluated how the pressure difference across the orifice is dependent on the length of upstream straight pipe in a branch and how swirl intensity, swirl angel and axial velocity distribution affect the measuring error of orifice flowmeter. From the results, it is found that, regardless of flow rate specified in this calculation, the effect of the straight pipe length can be neglected for the lengths larger than thirty diameters although there still remain significant swirl at the orifice

  • PDF

A Study on the Characteristics of Spray of Swirl Nozzle for Desel Engine Injector(I) (디젤기관용 와류분사 밸브의 분무특성에 관한 연구 (1) (대기압하의 분사))

  • 안수길;노철승;박상길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.88-97
    • /
    • 1984
  • The combustion process and the performance of a diesel engine are considerably affected by the characteristics of fuel spray. It is known that the spray of swirl nozzle for diesel engine injector of small orifice ratio becomes soft spray that has no core, therefore its penetration, one of the characteristics of spray becomes werse inspite of its good dispersion. In this paper, the spray characteristics of variously designed swirl nozzle for diesel injector were investigated by the photographic method. The nozzles, used in this experiment, vary in the diameter of swirl chambers and orifice ratio. From the results of the study, the sprays of this type nozzle of optimum swirl chamber and orifice ratio show that penetration decreased slightly but dispersion and spray volume increased remarcably, compared with unswirled single hole nozzle of the same size. It was suggested as a reason for the results, that the spray of this type swirl nozzle is similar to hard spray, therefore the core of the spray sustains good penetration considerably.

  • PDF

Breakup Lengths of Circular and Elliptical Liquid Jets in a Crossflow (횡단류 유동 내 원형 및 타원형 액체제트의 분열길이)

  • Song, Yoonho;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Breakup lengths of circular and elliptical liquid jets in a subsonic crossflow were experimentally studied. Two circular-shaped and four elliptical-shaped plain-orifice injectors, which had different aspect ratios and orifice length to diameter ratios, were used to provide various liquid jet conditions such as steady, cavitation, and hydraulic flip. By varying the injection pressure drop from 1 bar to 6 bar, spray images were taken using a shadowgraph technique. Breakup lengths were measured and analyzed. As the aspect ratio in orifices increased, liquid column breakup lengths normalized by the equivalent diameter were reduced irrespectively of the switching of the major or minor axis to the crossflow. It was also found that when hydraulic flip developed inside the orifice, x-directional breakup lengths more decreased for both circular and elliptical liquid jets.

Characteristics of Acoustic Damping Induced by Helmholtz Resonators with Various Geometric Factors in a Model Chamber (모형연소실내에서 헬름홀츠 공명기의 기하학적 형상 인자에 따른 음향 감쇠 특성)

  • Choi, Hyo-Hyun;Park, I-Sun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.254-257
    • /
    • 2010
  • Acoustic design parameters of a Helmholtz resonator are studied experimentally and numerically for acoustic stability in a model acoustic tube. Acoustic damping is quantified by the amplitude of the fluid velocity in mass-spring-damper system. The length of an orifice, the volume of a cavity, and the diameters of an orifice and a cavity in the resonator are selected as design parameters for tuning of the resonator. It is found that acoustic damping capacity is increased by shorter orifice and longer cavity in the resonator. As the ratio of the orifice diameter to the cavity diameter increases in the resonator, the damping capacity decreases.

  • PDF

A Study on the Optimization of Machining Process for Al6061 Using the AWJM (AWJM을 이용한 Al6061 절단조건 최적화에 관한 연구)

  • Lee, Jae-Kwang;Min, Byeong-Hyeon;Ye, Sang-Don;Jea, Wone-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.65-70
    • /
    • 2006
  • The AWJM(Abrasive Water-jet Machining) technology is one of the cutting technologies, which can cut various materials with 2 or 3 times of the speed of sound. In this study, processing conditions such as jet-pressure, cutting speed, orifice diameter and stand-off distance, are used by following the design of experiments with 3 levels. Al6061 material which is normally applied on the field, is applied. Through the S/N ratio analysis with measured values, the optimization value of processing conditions to minimize the surface roughness and taper value is obtained. The order of significance is as follows; jet pressure, cutting speed, abrasive mixing ratio, orifice diameter and stand-off distance. RSM(Response Surface Method) is applied to find the optimal processing conditions to minimize both the surface roughness and the taper value by using jet pressure, cutting speed and abrasive mixing ratio.

  • PDF

Experimental Study on Spray Characteristics of Twin Fluid Nozzle in Urea-SCR (Urea-SCR에 적용되는 이유체 노즐의 분무특성에 관한 실험적 연구)

  • Park, Hyung Sun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.96-102
    • /
    • 2017
  • In order to reduce the NOx, SCR technology is most suitable. In this study, we focused on studying the injector part of urea-SCR system. When stoichiometric 1 mole of urea is injected, 2 moles of $NH_3$ are created. $NH_3$ causes a SCR reaction by reacting with NOx. However, urea is decomposed by the side reaction of coming out HNCO, deposit formation is formed. In this study, it was to design a nozzle that can spray the optimal spray flow rate. Test nozzle used in this experiment is efferverscent type. The result of the experiment, liquid flow rate was confirmed to be that they are dominated by the exit orifice diameter. The area ratio is defined by ratio of the area of exit orifice hole and that of aerorator. The droplet size was measured by varying the area ratios. In addition, it was also confirmed that there is no change of the liquid flow rate and air flow rate to change the aerorator at the same exit orifice. Further, It was confirmed that the droplet size was relatively uniform even though the area ratio was different. Finally, there is little change in the SMD that air flow rate increases in 0.3 or more ALR.

A Numerical Analysis on the Rotordynamic Characteristics of A Hybrid Journal Bearing with Pair-Type Angled Injection Orifices (짝(Pair)형태의 경사 공급구를 갖는 하이브리드 저널 베어링의 로터 동특성에 관한 수치해석)

  • 김창호;이용복
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.111-121
    • /
    • 1997
  • The stability of a rotor-bearing system supported by swirl-controlled hybrid journal bearing with pair-type angled injection orifices is investigated for improvement of the whirl frequency ratio by allowing effective control of the tangential flow inside the bearing clearance, i.e., by achieving more freedom in controlling strength and direction of the supply tangential flow inside the bearing clearance. It is suggested that the system instability can be improved through the change of bearing dynamic characteristic parameters with the swirl control. The orifice diameter d$_0$ and recess injection angle $\alpha$ along with combinations of swirl/anti-swirl supply pressures and directions (3.0-3.0MPa, 4.0-2.0MPa, 2.0-4.0MPa) are selected for design parameters for swirl-controlled effective factors dependent on journal speeds (3000, 9000, 15000, 21000 rpm). It has been found that the orifice diameter do shows strong effects on effective maneuverability of direct-stiffness and direct damping values, while recess injection angle $\alpha$ results in substantial magnitude and direction of cross-stiffness. Specifically, recess injection parameters which are functions of angle of orifice feeding flow and recess dimensions showed very feasible effect on the stability of swirl-controlled rotor-bearing system.

  • PDF

A Numerical Analysis on the Rotordynamic Characteristics of a Hybrid Journal Bearing with Pair-Type Angled Injection Orifices (짝(Pair) 형태의 경사 공급구를 갖는 하이브리드 저널 베어링의 로터 동특성에 관한 수치해석)

  • 김창호;이용복
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.63-72
    • /
    • 1997
  • The stability of a rotor-bearing system supported by swirl-controlled hybrid journal bearing with pair-type angled injection orifices is investigated for improvement of the whirl frequency ratio by allowing effective control of the tangential flow inside the bearing clearance, i.e., by achieving more freedom in controlling strength and direction of the supply tangential flow inside the bearing clearance. It is suggested that the system instability can be improved through the change of bearing dynamic characteristic parameters with the swirl control. The orifice diameter $d_0$ and recess injection angle $\alpha$ along with combinations of swirl/anti-swirl supply pressures and directions (3.0~3.0 MPa, 4.0~2.0 MPa, 2.0~4.0 MPa) are selected for design parameters for swirl-controlled effective factors dependent on journal speeds (3000, 9000, 15000, 21000 rpm). It has been found that the orifice diameter $d_0$ shows strong effects on effective maneuverability of direct-stiffness and direct damping values, while recess injection angle $\alpha$ results in substantial effects on the magnitude and direction of cross-stiffness. Specifically, recess injection parameters which are functions of angle of orifice feeding flow and recess dimensions showed very feasible effect on the stability control of swirl-controlled rotor-bearing system.