• Title/Summary/Keyword: Orientation Function

Search Result 488, Processing Time 0.031 seconds

Effect of Fiber Orientation on the Tensile Strength in Twisted Yarn Composites (Twisted Yarn 복합재료에서 인장강도에 미치는 섬유배향의 영향)

  • Lee, Dong-Ki;Sim, Jae-Ki;Kim, Hyuk;Kim, Jin-Woo;Lee, Jung-Ju;Lee, Ha-Wook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.422-425
    • /
    • 2003
  • Investigated whether fiber orientation distribution of twisted yarn composites and the fiber content are 0$^{\circ}$ and 90$^{\circ}$ direction tensile strength and some correlation. Tensile strength of 0$^{\circ}$ directions of twisted yarn composites increased changelessly being proportional the fiber content and fiber orientation function get into anisotropic in isotropic. But, tensile strength ratio by separation of fiber filament of 90$^{\circ}$ directions tensile strength decreased when tensile load is imposed for width direction of reinforcement fiber. 0$^{\circ}$ and 90$^{\circ}$ direction tensile strength ratio value of a twisted yarn composites not receive almost effect of the fiber content of fiber orientation function J = 0.4 lows. Although do, 20 wt% of the fiber content is high about 0$^{\circ}$ and 90$^{\circ}$ direction tensile strength ratio about 1.6~2 than 10 wt% from J = 0.4. Therefore. could know that effect of the fiber content is dominate.

  • PDF

A Study on Correlation Between Separation and Orientation of Fibres During Compression Molding of Long Fibre-Reinforced Polymeric Composites (장섬유강화 고분자복합판의 압축성형에 있어서 섬유의 분리와 배향의 상관관계에 관한 연구)

  • 이동기;유정훈;김이곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 1993
  • During compression molding of fibre-reinforced thermoplastics, the two main problems such as the fibre-matrix separation and the fibre orientation are produced by the flow state. As the molded product tends to be nonhomogeneous and anisotropic due to the separation and the orientation, it is necessary to clarify these in relation to the molding process variables and the fibre structure (fibre entanglement). If the entanglement of fibre structure is strong, the separation increases and the orientation is not easily aligned. Namely, these are inseparably related to each other. The correlation between the separation and the orientation have to be clarified for designing the fibre structure. In this paper, the degree of nonhomogeneity which is a measure of the separation is obtained using one-dimensional rectangular shaped part compression molding. And the orientation function is defined and measured by the image processing using soft X-rayed photograph and image scanner. Correlation between the degree of nonhomogeneity and the orientation function is discussed.

Accuracy Comparison between Intensity Method and Count Method in Measurement of Planar Orientation of Fibers Using Image Processing (화상 처리를 이용한 섬유 배향각 분포 측정에서 농도법과 카운트법의 정확도 비교)

  • Lee, S.D.;Kim, H.;Lee, D.G.;Han, G.Y.;Kim, E.G.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.5
    • /
    • pp.357-364
    • /
    • 1998
  • To investigate accuracies between intensity method and count method for measurement of the fiber orientation distribution, fiber orientation function is derived by drawing simulation figure for the fiber orientation as varying fiber aspect ratio, fiber area ratio, and fiber orientation state, respectively. The values of fiber orientation function measured by intensity method and count method are compared with the calculated ones from simulation figures. The results show that measurement accuracy of fiber orientation angle distribution obtained by count method is by 4% higher than that by intensity method.

  • PDF

Effect of Uniaxial Drawing Conditions on the Orientation of Poly (ethylene 2,6- naphthalate) (일축 연신 조건에 따른 Poly(ethylene 2,6-naphthalate) 배향에 관한 연구)

  • 진병석;이성효;이광희
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.699-706
    • /
    • 2001
  • The effects of uniaxial drawing conditions on the molecular orientation of poly (ethylene 2,6-naphthalate) (PEN) are investigated. Birefringence measurements show that the orientation is significantly enhanced at high draw ratio, low drawing temperature, and fast drawing speed. The characteristics of orientation examined by FTIR- ATR dichroism method represent almost same results. Amorphous orientation function increases with drawing rate at $120^{\circ}C$, but it decreases with drawing rate at $141^{\circ}C$. These behaviors can be explained with the relation between crystallization and chain relaxation rates. It is observed that the orientation of PEN film is accompanied by significant alignment of the naphthalene rings of PEN parallel to the film surface.

  • PDF

Application of Inverse Pole Figure to Rietveld Refinement: II. Rietveld Refinement of Tungsten Liner using Neutron Diffraction Data

  • Kim, Yong-Il;Lee, Jeong-Soo;Jung, Maeng-Joon;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.240-244
    • /
    • 2000
  • The three-dimensional orientation distribution function of a conical shaped tungsten liner prepared by the thermo-mechanical forming process was analyzed by 1.525$\AA$ neutrons to carry out the Rietveld refinement. The pole figure data of three reflections, (110)(220) and (211) were measured. The orientation distribution functions for the normal and radial directions were calculated by the WIMV method. The inverse pole figures of the normal and radial directions were obtained from their orientation distribution functions. The Rietveld refinement was performed with the RIETAN program that was slightly modified for the description of preferred orientation effect. We could successfully do the Rietveld refinement of the strongly textured tungsten liner by applying the pole density of each reflection obtained from the inverse pole figure to the calculated diffraction pattern. The correction method of preferred orientation effect based on the inverse pole figures showed a good improvement over the semi-empirical texture correction based on the direct usage of simple empirical functions.

  • PDF

Relationship between Fiber Orientation Distribution Function and Mechanical Anisotropy of Thermally Point-Bonded Nonwovens

  • Kim, Han-Seong
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.177-181
    • /
    • 2004
  • Current efforts to establish links between geometrical features and mechanical performance of nonwoven fabrics in general, and of point-bonded (spot-bonded) nonwovens in particular has been made using the measurements of Fiber Orientation Distribution Function (ODF) and tensile modulus which occurs during controlled-deformation experiments. Image analysis technique (using the Fast Fourier Transform) was used to quantify the fiber orientation distribution. The results suggest that, within a typical window of processing conditions, the fiber orientation has a significant influence on the anisotropical behavior of nonwoven. The data also suggest that mechanical anisotropy of thermally point-bonded nonwovens is likely to be governed by different load transfer mechanism according to the applied macroscopic tensile direction.

Determination of Optimal Build Orientation Based on Satisfactory Degree Theory for RPT

  • Zhao, Jibin;Liu, Weijun;Wu, Jianhuang
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • In rapid prototyping, the optimal part orientation during fabrication is critical as it can improve part accuracy, minimize the requirement for supports and reduce the production time. Through investigating the geometric issues of STL model and process planning of RPM, This paper establishes optimizing model based on the considerations of staircase effect, support area and production time. The general satisfactory degree function is constructed employing the multi-objective optimization theory based on the general satisfactory degree principle. The best part-building orientation is obtained by solving the function employing generic algorithm. Experiment shows that the methods can effective resolve the part-building orientation in RP.

Effects on Aesthetic Response of Typicality According to Product Orientation and Price Levels (제품별 지향성과 가격수준에 따른 전형성이 심미적 반응에 미치는 효과에 관한 연구)

  • 이진렬;김진아;홍정표
    • Archives of design research
    • /
    • v.14 no.1
    • /
    • pp.103-110
    • /
    • 2001
  • The purpose of this study is to test the typicality effects to aesthetic response according to product orientation (design-oriented vs function- oriented) and perceived purchase risk. This study overcame the limitations of existing researches which haven't had the consensus about the relationship between typicality and preference and consequently suggested the typicality effect to aesthetic response by analyzing this relationship with product orientation and perceived purchase risk. The results of this study showed the inverted U-shaped relationship in design-oriented products and no relationship in function-oriented products between typicality and preference.

  • PDF

Effect of Fiber Orientation on the Tensile Strength in Long-Fiber Reinforced Polymeric Composites (장섬유강화 고분자 복합재료에서 인장강도에 미치는 섬유배향의 영향)

  • Lee, Dong-Gi;Sim, Jae-Ki;Han, Gil-Young;Kim, Hyuk;Kim, Jin-Woo;Lee, Jung-Ju
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.55-60
    • /
    • 2003
  • Case that long-fiber reinforced polymeric composites of fiber orientation situation of a direction state is J=1 that is direction of tensile strength of another state appeared highest. And theoretical tensile strength value of long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state appeared similarly with tensile strength value that long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state. Also, than case that efficiency of fiber orientation situation of long-fiber reinforced polymeric composites is J=1 in it is J=0.1 of fiber orientation situation effect of long-fiber reinforced polymeric composites about 60% high appear.

  • PDF

A Study on the Fiber Orientation and Fiber Content Ratio Distribution during the Injection Molding for FRP (FRP의 사출성형에 있어서 섬유배향상태와 섬유함유율분포에 관한 연구)

  • Kim J. W.;Lee D. G.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.252-257
    • /
    • 2005
  • Injection molding is a very important industrial process for the manufacturing of plastics objects. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation' orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of weld-line in injection-molded products is assessed. And the effects of fiber content and injection mold-gate conditions on the fiber orientation are also discussed.

  • PDF