• Title/Summary/Keyword: Organotypic culture

Search Result 34, Processing Time 0.031 seconds

Change of Stratification of Three Dimensional Culture by Gingival Keratinocytes & Fibroblasts (치은 각화상피세포와 섬유아세포를 이용한 삼차원적 배양시 중층화 동안의 변화)

  • Jung, Tae-Heup;Hyun, Ha-Na;Kim, Yun-Sang;Kim, Eun-Cheol;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.129-142
    • /
    • 2002
  • Epithelial-mesenchymal interaction plays a important role in cell growth and differentiation. This interaction is already well known to have an importance during the organ development as well as cell growth and differentiation. However, in vitro experimental model is not well developed to reproduce in vivo cellular microenvironment which provide a epithelial-mesenchymal interaction. Because conventional monolayer culture lacks epithelial-mensenchymal interaction, cultivated cells have an morphologic, biochemical, and functional characteristics differ from in vivo tissue. Moreover, it's condition is not able to induce cellular differention due to submerged culture condition. Therefore, the aims of this study were to develop and evaualte the in vitro experimental model that maintains epithelial-mesenchymal interaction by organotypic raft culture, and to characterize biologic properties of three-dimensionally reconstituted oral keratinocytes by histological and immunohistochemical analysis. The results were as follow; 1. Gingival keratinocytes reconstituted by three-dimensional organotypic culture revealed similar morphologic characteristics to biopsied patient specimen showing stratification, hyperkeratinosis, matutation of epithelial architecture. 2. Connective tissue structure was matured, and there is no difference during stratification period of epithelial 3-dimensional culture. 3. The longer of air-exposure culture on three-dimensionally reconstituted cells, the more epithelial maturation, increased epithelial thickness and surface keratinization 4. In reconstitued mucosa, the whole epidermis was positively stained by anti-involucrin antibody, and there is no difference according to air-exposured culture period. 5. The Hsp was expressed in the epithelial layer of three-dimensionally cultured cells, especially basal layer of epidermis. The change of Hsp expression was not significant by culture stratification. 6. Connexin 43, marker of cell-cell communication was revealed mild immunodeposition in reconstitued epithelium, and there is no significant expression change during stratification. These results suggest that three-dimensional oragnotypic co-culture of normal gingival keratinocytes with dermal equivalent consisting type I collagen and gingival fibroblasts results in similar morphologic and immunohistochemical characteristics to in vivo patient specimens. And this culture system seems to provide adequate micro-environment for in vitro tissue reconstitution. Therefore, further study will be focused to study of in vitro gingivitis model, development of novel perioodntal disease therapeutics and epithelial-mensenchymal interaction.

Neuroprotective Effects of Rehmanniae Radix on PC12 Cells and Hippocampal Neural Cells (선지황(鮮地黃)이 PC12 세포 및 뇌해마 신경세포 손상에 미치는 영향)

  • Jo, Jae-Heun;Shin, Jung-Won;Shim, Eun-Shep;Kim, Bum-Hoi;Sohn, Young-Joo;Jung, Hyuk-Sang;Sohn, Nak-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1401-1406
    • /
    • 2007
  • The present study investigated neuroprotective effects Rehmanniae Radix on PC12 cells and hippocampal neural cells. PC12 cells were damage by $H_2O_2$ and nitric oxide and organotypic hippocampal slice cultures were damaged by oxygen-glucose deprivation. Then methanol extract of Rehmanniae Radix was treated with 0.5, 5, and $50\;{\mu}g/ml$ in culture media. Effects of Rehmanniae Radix were evaluated with cell viability assay, PI-staining, and TUNEL-labeling. Treatment of Rehmanniae Radix ($with\;5\;and\;50\;{\mu}g/ml$) produced significant increase of cell viability of PC12 cells damaged by $H_2O_2$ and by SNP-induced nitric oxide. Treatment of Rehmanniae Radix produced significant decrease of PI-uptake % in CA1 ($with\;5\;and\;50\;{\mu}g/ml$) and DG ($with\;50\;{\mu}g/ml$) regions of organotypic hippocampal slice cultures damaged by oxygen-glucose deprivation. Moreover, treatment of Rehmanniae Radix produced significant decrease of TUNEL- positive cells in CA1 ($with\;5\;and\;50\;{\mu}g/ml$) and DG ($with\;50\;{\mu}g/ml$) regions of organotypic hippocampal slice cultures damaged by oxygen-glucose deprivation. These results suggest that methanol extract of Rehmanniae Radix has neuroprotective effects on PC12 cells damaged by oxidative stress and on organotypic hippocampal slice cultures damaged by oxygen-glucose deprivation.

Estrogen Pretreatment of Organotypic Hippocampal Slices Protects Neurons against Oxygen-Glucose Deprivation with Akt Activation

  • Park, Eun-Mi;Park, Sung-Hui;Lee, Kyung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.3
    • /
    • pp.123-129
    • /
    • 2006
  • In several experimental models, estrogens protect neurons against ischemic insults. However, the recent clinical studies of hormone replacement showed negative results to prevent stroke. Therefore, optimal models to study estrogen replacement for neuroprotection are needed before its clinical ap-plication. Organotypic hippocampal slice under oxygen-glucose deprivation (OGD) has been established as a model of cerebral ischemia and has advantages to study drug effects. We investigated whether estrogen protected CAI neurons and affected activation of Akt (pAkt) in CAI region under OGD. Thus, rat hippocampal slices on day 7 of culture were treated with $17-{\beta}$ estradiol (E, 1 nM) for 7 days before 30 min OGD, and cell death of CAI neurons was quantified by propidium iodide (PI) staining and expression of pAkt was studied by Western blot and immunofluorescence. PI intensity in slices treated with E was significantly reduced 72 hour after OGD compared to that of non-treated slices (p < 0.05). E pretreatment also increased the expression of pAkt 72 hour after OGD compared to that of no treatment (p<0.01). These data suggest that estrogen pretreatment may rescue neurons from ischemic insults through the activation of Akt and also indicate that our model would be a useful alternative method to study the mechanisms and effects of estrogen replacement treatment for neuroprotection.

Vitamin E protects neurons against kainic acid-induced neurotoxicity in organotypic hippocampal slice culture (뇌 해마 절편 배양 모델에서 흥분 독성에 대한 비타민 E의 신경 보호 효과)

  • Kim, Ga-Min;Jung, Na-Young;Lee, Kyung-Hee;Kim, Hyung-A;Kim, Un-Jeng;Lee, Bae-Hwan
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.190-192
    • /
    • 2009
  • Kainic acid (KA), an agonist for kainate and AMPA receptors, is an excitatory neurotoxic substance. Vitamin E such as alpha-tocopherol and alpha-tocotrienol is a chain-breaking antioxidant, preventing the chain propagation step during lipid peroxidation. In the present study, we have investigated the neuroprotective effects of alphatocopherol and alpha-tocotrienol on KA-induced neuronal death using organotypic hippocampal slice culture (OHSC). After 15h KA treatment, delayed neuronal death was detected in CA3 region. Alpha-tocopherol and alpha-tocotrienol increased cell survival and reduced the number of TUNEL-positive cells in CA3 region. These data suggest that alpha-tocopherol and alpha-tocotrienol treatment have protective effects on KA-induced cell death

  • PDF

Neuroprotective Effects of Medicinal Herbs in Organotypic Hippocampal Slice Cultures (뇌해마의 장기양 조직배양을 이용한 한약물의 뇌신경세포손상 보호효능 연구)

  • Jung, Hyuk-Sang;Sohn, Nak-Won;Lee, Won-Chul
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.461-472
    • /
    • 2004
  • Objectives : For the screening of neuroprotective effects of medicinal herbs, the complex system of animal models suffer some disadvantages in controlling critical parameters such as blood pressure and body temperature. Additionally, application of drugs to the appropriate brain area sometimes is difficult, due to poor permeability though the blood brain barrier, and so potential protective effects might be masked. Methods : Organotypic hippocampal slice culture (OHSC) method has the advantages of being relatively easy to prepare and of maintaining the general structure, including tissue integrity and the connections between cells. Drugs can easily be applied and neuronal damage can easily be quantified by using tissues and culture media. This study demonstrates neuroprotective effects of Puerariae radix (葛根, PR), Salviae miltiorrhizae radix (丹蔘, SR), Rhei rhizoma (大黃, RR), and Bupleuri radix (柴胡, BR). These were screenedand compared to MK-801, antagonist of NMDA receptors, by using OHSC of 1 week-old Sprague-Dawley rats. Oxygen/glucose deprivation (OGD) were conducted in an anaerobic chamber $(85%\;N_2,\;10%\;CO_2\;and\;5%\;H_2)$ in a deoxygenated glucose-free medium for 60 minutes. Water extracts of each herbs were treated to culture media with $5\;{\mu}g/ml$ for 48 hours. Results : Neuronal cell death in the cultures was monitored by densitometric measurements of the cellular uptake of propidium iodide (PI). PI fluorescence images were obtained at 48 hours after the OGD and medicinal herb treatment. Also TUNEL-positive cells in the CAI and DG regions and LDH concentrations in culture media were measured at 48 hours after the OGD. According to measured data, MK-801, PR, SR and BR demonstrated significant neuroprotective effect against excessive neuronal cell death and apoptosis induced by the OGD insult. Especially, PR revealed similar neuroprotective effect to MK-801 and RR demonstrated weak neuroprotective effect. Conclusions : These results suggest that OHSC can be a suitable method for screening of neuroprotective effects of medicinal herbs. (This work was supported by the research program of Dongguk University and Grant 01-PJ9-PG1-01CO03-0003 from Ministry of Health & Welfare.)

  • PDF

Effects of MK-801, CNQX, Cycloheximide and BAPTA-AM on Anoxic Injury of Hippocampal Organotypic Slice Culture (해마 조직 절편 배양을 이용한 무산소 손상에 대한 MK-801, CNQX, Cycloheximide 및 BAPTA-AM의 효과)

  • Moon, Soo-Hyeon;Kwon, Taek-Hyon;Park, Youn-Kwan;Chung, Heung-Seob;Suh, Jung Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.8
    • /
    • pp.1008-1018
    • /
    • 2000
  • Objective : Glutamate induced excitotoxicity is one of the leading causes of cell death under pathologic condition. However, there is controversy whether excitotoxicity may also participate in the neuronal death under low intensity insult such as simple hypoxia or hypoglycemia. To investigate the role of NMDA receptor in low intensity insult, we chose anoxia as the method of injury and used organotypically cultured hippocampal slice as the material of experiment. Materials & Methods : The hippocampal slices cultured for 2-3 weeks were exposed to 60 minutes of complete oxygen deprivation(anoxia). Neuronal death was assessed with Sytox stain. Corrected optical density of fluorescence in gray scale, used as cellular death indicator, was obtained from pictures taken at 24 and 48 hours following the insult. The well-known in vivo phenomenon of regional difference in susceptibility of hippocampal sub-fields to ischemic insult was reproduced in HOSC(hippocampal organotypic slice culture) by complete oxygen deprivation injury. Results : $CA_1$ was the most vulnerable to complete oxygen deprivation in hippocampus while $CA_3$ was resistant. Oxygen deprivation for 10 and 20 minutes with glucose(6.5g/l) present was insufficient to induce neuronal death in the cultured hippocampal slice. However, after 30 minutes exposure under anoxic condition, neuronal death was able to be detected in the center of $CA_1$ area. The intensity and area of fluorescence indicating cell death correlated with the duration of oxygen deprivation. NMDA receptor and non-NMDA receptor blocking with MK-801(30 & $60{\mu}M$) and CNQX($100{\mu}M$) did not provide cellular protection to HOSC against damage induced by oxygen deprivation, but increased intracellular calcium buffering capacity with BAPTA-AM($10{\mu}M$) was effective in preventing neuronal death (p=0.01, Student's t-test). Cycloheximide($1{\mu}g/ml$, $10{\mu}g/ml$) provided no protection to HOSC against insult of complete oxygen deprivation for 60 minutes and combined therapy of MK-801(30 & $60{\mu}M$) and cycloheximide(1 & $10{\mu}g/ml$) was also ineffective in preventing neuronal death. Conclusion : The results of this study show that the another mechanism not associated with glutamate receptor(NMDA & non NMDA) may play major role in cell death mechanisms induced by complete oxygen deprivation and increased intracellular calcium during anoxia may participate in the neuronal death mechanism of oxygen deprivation. Further investigation of the calcium entry channel activated during oxygen deprivation is necessary to understand the neuronal death of anoxia.

  • PDF

Changes in the Neurogenesis and Axonal Sprouting in the Organotypic Hippocampal Slice Culture by Aβ25-35 Treatment

  • Jung, Yeon Joo;Jiang, Hui Ling;Lee, Kyung Eun
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.200-206
    • /
    • 2012
  • Induction of neurogenesis can occur in the hippocampus in response to various pathological conditions, such as Alzheimer's disease. The aim of this study was to investigate the changes that occur in endogenous neural stem cells in response to amyloid beta $(A{\beta})_{25-35}$-induced neuronal cell damage in organotypic hippocampal slice cultures. Cresyl violet staining and Fluoro-Jade B staining were used to detect neuronal cell damage and changes of mossy fiber terminals were observed by Timm's staining. The immunofl uorescence staining was used to detect the newly generated cells in the subgranular zone (SGZ) of the dentate gyrus with specific marker, 5-bromo-2'-deoxyuridine (BrdU), Ki-67, Nestin, and doublecortin (DCX). In compared to control slices, neuronal cell damage was observed and the mossy fibers were expanded to CA3 area by treatment with $A{\beta}_{25-35}$. Ki-67/Nestin- and BrdU/DCX-positive cells were detected in the SGZ. In conclusion, these results demonstrate that $A{\beta}$-induced neuronal damage results in an increase in endogenous neural stem cells in rat hippocampal slice cultures not only for gliosis but also for neurogenesis.

Neuroprotective effects of vitamin C (비타민 C의 신경 보호 효과)

  • Sim, In-Seop;Lee, Kyeong-Hui;Kim, Eun-Jin;Cha, Myeong-Hun;Kim, Eun-Jeong;Kim, Ga-Min;Kim, Hyeong-A;Lee, Bae-Hwan
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2008.10a
    • /
    • pp.147-150
    • /
    • 2008
  • Vitamin C ascorbic acid (AA) and dehydroascorbic acid (DHA) as an antioxidant have been shown to have protective effects in experimental neurological disorder models such as stroke, ischemia, and epileptic seizures. The present study was conducted to examine the protective effect of AA and DHA on Kainic acid (KA) neurotoxicity using organotypic hippocampal slice cultures (OHSC). After 12h KA treatment, significant delayed neuronal death was detected in CA3 region, but not in CA1. Intermediate dose of AA and DHA pretreatment significantly prevented cell death and inhibit ROS level, mitochondrial dysfunction and capase-3 activation in CA3 region. In the case of low or high dose, however, AA or DHA pretreatment were not effective. These data suggest that both AA and DHA pretreatment have neuroprotective effects on KA-induced neuronal injury depending on the concentration, by means of inhibition of ROS generation, mitochondrial dysfunction, and caspase-dependent apoptotic pathway.

  • PDF

Engineering of a Human Skin Equivalent

  • Ghalbzouri Abdoelwaheb El
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.105-130
    • /
    • 2003
  • Human skin equivalents, also designated as cultured skin substitute (Boyce and Warden, 2002) or organotypic co-cultures (Maas-Szabowski et al., 1999, 2000, 2003), are three-dimensional systems that are engineered by seeding fibroblasts into a three-dimensional dermal matrix. Such a dermal equivalent is then subsequently seeded with human keratinocytes. After cell attachment, the culture is kept first under submerged condition to allow keratinocyte proliferation. Thereafter, the culture is lifted the air-liquid interface (A/L) to expose the epidermal compartment to the air, and to further induce keratinocyte differentiation. During the air-exposure, nutrients from the medium will diffuse through the underlying dermal substrate towards the epidermal compartment and support keratinocyte proliferation and differentiation. Under these conditions, a HSE is formed that shows high similarity with the native tissue from which it was derived (Figure 1) (Bell et at., 1981; Boyce et al., 1988; Ponec et al., 1997;El Ghalbzouri et al.., 2002).