• Title/Summary/Keyword: Organotin(IV)

Search Result 7, Processing Time 0.018 seconds

Synthesis, Spectroscopic Studies and Biological Applications of Organotin(IV) Derivatives of 3-[N-(4-Nitrophenyl)-amido]propenoic Acid and 3-[N-(4-Nitrophenyl)-amido]propanoic Acid

  • Shahid, Khadija;Shahzadi, Saira;Ali, Saqib;Mazhar, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.44-52
    • /
    • 2006
  • New organotin(IV) derivatives with general formulae R_2SnL_2 and R_3SnL, where R = methyl, n-butyl, n-octyl and phenyl and HL is either 3-[N-(4-nitrophenyl)amido]-propenoic acid or 3-[N-(4-nitrophenyl)amido] propanoic acid have been synthesized in 1 : 2 and 1 : 1 molar ratio by different methods. The FTIR spectra clearly demonstrated that the organotin(IV) moieties react with [O,O] atoms of the ligands. The bonding and coordination behavior in these complexes are discussed on the basis of multinuclear (^1H,\,^{13}C,\,^{119}Sn) NMR and mass spectrometric studies. Antibacterial, and antifungal screening tests were performed for these compounds and reported here. These values were compared to those of the precursors and it was found that diorganotin(IV) complexes exhibit less activity as compared to triorganotin(IV) complexes . LD_{50} data were obtained by Brine Shrimp assay method. Insecticidal activity was performed for selective compounds by contact toxicity method.

Kinetics study of photo-degradation of poly(Vinyl Chloride) films in presence of organotin(IV) complex derivatives

  • Alaa Mohammed;Mohammed Kadhom;Marwa Fadhil;Alhamzah D. Hameed;Ahmed Imad;Ahmed Alamiery;Muna Bufaroosha;Rahimi M. Yusop;Ali Jawad;Emad Yousif
    • Analytical Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.251-260
    • /
    • 2024
  • As polymers became very important in our lives, their negative impact on general health and the environment raised a serious issue. Here, enhancing their life term is presented as a compromise solution between the need and harm. In the study, six PVC films, the plain and five filled with improvers, underwent radiation exposure for 300 hours at room temperature to investigate their photodegradation rates. The modified films were embedded with organotin(IV) complex derivatives (Ph3SnL, Ph2SnL2, Bu3SnL, Bu2SnL2, and Me2SnL2 (where L is levofloxacin)), and their effectiveness was evaluated. The PVC films were compared before and after exposure to various tests including UV-Vis spectroscopy, gel content analysis, theoretical calculations, and EDX microscopy. Findings indicated that the presence of organotin(IV) complex derivatives, particularly Ph3SnL, notably decreased UV light absorbance and the amount of gel content in PVC sheets in comparison to untreated PVC. Furthermore, EDX analysis showed that the PVC-Ph3SnL blend exposed to radiation exhibited the highest chlorine content, reaching 30 %. This blend demonstrated superior efficacy in stabilizing the polymeric materials.

Coordination Chemistry of Organotin(IV) Dithiocarbamate Complexes

  • Jung, Ok-Sang;Sohn, Youn-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.365-368
    • /
    • 1988
  • Coordination chemistry of organotin(IV) dithiocarbamate complexes has been examined in terms of far infrared and $^{119}Sn$-NMR spectroscopies. Although the Sn-S stretching vibrational bands of the complex could not be correlated with the bonding nature of the dithiocarbamate ligand, $^{119}Sn$ chemical shifts were sensitive enough to distinguish clearly the coordination number of tin, and as such the bonding mode of the dithiocarbamate ligand could be indentified to be monodentate or bidentate. Thus the $^{119}Sn$-NMR study on new cyclohexyltin(IV) dithiocarbamate complexes along with the known complexes suggests that the bonding mode of the dithiocarbamate ligands and the consequent coordination number of tin are determined mainly by the inductive effects of the organic groups attached to the tin atom.

Synthesis and Characterization of a Novel Organotin Complex: Di(n-butyl) chloro[5-(p-dimethylaminobenzylidene)rhodanine]tin(IV) Based on a Competing N, O, and S Donor Ligand (새로운 유기주석 착물의 합성과 특성: 경쟁적인 N, O 및 S 주개 리간드에 기초한 Di(n-butyl)chloro[5-( p-dimethylaminobenzylidene)rhodanine]tin(IV))

  • Tarassoli, Abbas;Sedaghat, Tahereh;Mousavi, Fatemeh
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.590-593
    • /
    • 2011
  • A novel organotin(IV) complex has been prepared from $Bu_2SnCl_2$ and the N, O and S donor ligand, 5-(p-dimethylaminobenzylidene) rodanine (HL). The ligand is deprotonated in the presence of a base and the complex with the general formula $SnBuCl_2L$ is formed. This complex was fully characterized by IR, $^1H$ NMR and $^{119}Sn$ NMR and elemental analysis. Spectroscopic data indicate the ligand is coordinated through the oxygen atom to the tin and the coordination number of four is supported by $^{119}Sn$ NMR data in solution.

Synthesis and Characterization of New Organotin (IV)-phenylenebisdithiocarbamate Complexes

  • Lee, Won-Ho;Jung, Ok-Sang;Sohn, Youn-Soo;Kim, Poong-Zag
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.421-425
    • /
    • 1986
  • New di- and triorganotin(IV) complexes of meta- and para-phenylenebisdithiocarbamate(m- and p-pbdtc) have been synthesized and characterized by means of chemical analysis, mass spectrometry, and IR spectroscopy. The reaction of the m-pbdtc ligand with diorganotin(IV) halides resulted in 1:1 products, $R_2Sn{\cdot}m$-pbdtc (R = Me, Cy, n-Bu) of dimeric nature whereas the p-pbdtc ligand led to an oligomeric or polymeric structure. The pbdtc ligands were also reacted with triorganotin(IV) halides to form monomeric complexes, $(R_3Sn)_2{\cdot}pbdtc.$ The tin coordination chemistry of these complexes were also discussed in terms of Sn-C and Sn-S bonding modes.

Electrochemical Studies on Corrosion Inhibition Behaviour of Synthesised 2-acetylpyridine 4-ethyl-3-thiosemicarbazone and Its Tin(IV) Complex for Mild Steel in 1 M HCl Solution

  • Hazani, Nur Nadira;Mohd, Yusairie;Ghazali, Sheikh Ahmad Izaddin Sheikh Mohd;Farina, Yang;Dzulkifli, Nur Nadia
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Corrosion inhibition by synthesised ligand, 2-acetylpyridine 4-ethyl-3-thiosemicarbazone (HAcETSc) and its tin(IV) complex, dichlorobutyltin(IV) 2-acetylpyridine 4-ethyl-3-thiosemicarbazone ($Sn(HAcETSc)BuCl_2$) on mild steel in 1 M hydrochloric acid (HCl) was studied using weight loss measurement, potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The inhibition efficiency increases by increasing the inhibitor concentrations. The polarisation study showed that both synthesised compounds were mixed type inhibitors. The electrochemical impedance study showed that the presence of inhibitors caused the charge transfer resistance to increase as the concentration of inhibitors increased. The adsorption of these compounds on mild steel surface was found to obey Langmuir's adsorption isotherm with the free energy of adsorption ${\Delta}G{^o}_{ads}$ of -3.7 kJ/mol and -7.7 kJ/mol for ligand and complex respectively, indicating physisorption interaction between the inhibitors and 1 M HCl solution.

Di- and Triorganotin(IV) Complexes of Sulfur-containing Ylidenemalonates

  • Jung, Ok-Sang;Lee, Young-A;Hong, Jong-Ki;Jeong, Jong-Hwa;Sohn, Youn-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.722-726
    • /
    • 1993
  • Organotin(IV) complexes of ylidenemalonates $(R_xSn)_{x-1}(O_2C)_2C=C(SR')_2\;(R=n-C_4H_9,\;C_6H_5,\;cyclo-C_6H_{11},\;CH_3OOCCH_2CH_2;\;x=2,3;\;R'=CH_3,\;R_2'=-CHCH-,\;-CH_2CH_{2^-})$ have been synthesized and characterized by means of various spectroscopic methods. The X-ray crystal structure of $(Ph_3Sn)_2(O_2C)_2C=C(SCH_3)_2$ has been determined (Pi; a= 9.704(2) ${\AA}$, b= 14.412(1) ${\AA}$, c= 14.760(3) ${\AA}$, ${alpha}$=74.26(1)$^{\circ}$, ${beta}$=99.38(l)$^{\circ}$, ${\gamma}$=79.09(1)$^{\circ}$, $V= 1950.7(7){\AA}^3$) and refined to R= 0.045. The crystal structure discloses a discrete molecule with bidentate-like carboxylate ligand. For diorganotin analogues, the structures are discussed in terms of IR, $^1H-NMR,\;^{13}C-NMR$, and FAB mass spectrometry. The mass spectrum indicates that the diorganotin complexes of ylidenemalonates are dimeric.