• Title/Summary/Keyword: Organoids

Search Result 37, Processing Time 0.026 seconds

Increased SOX2 expression in three-dimensional sphere culture of dental pulp stem cells

  • Seo, Eun Jin;Jang, Il Ho
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.197-203
    • /
    • 2020
  • Mesenchymal stem cells in the dental pulp exhibit a tendency for differentiation into various dental lineages and hold great potential as a major conduit for regenerative treatment in dentistry. Although they can be readily isolated from teeth, the exact characteristics of these stem cells have not been fully understood so far. When compared to two-dimensional (2D) cultures, three-dimensional (3D) cultures have the advantage of enriching the stem cell population. Hence, 3D-organoid culture and 3D-sphere culture were applied to dental pulp cells in the current study. Although the establishment of the organoid culture proved unsuccessful, the 3D-sphere culture readily initiated the stable generation of cell aggregates, which continued to grow and could be passaged to the second round. Interestingly, a significant increase in SOX2 expression was detected in the 3D-spheroid culture compared to the 2D culture. These results indicate the enrichment of the stemness-high population in the 3D-sphere culture. Thus, 3D-sphere culture may act as a link between the conventional and 3D-organoid cultures and aid in understanding the characteristics of dental pulp stem cells.

Growth and Differentiation of Mammary Epithelial Cells in Extracellular Maxtrix Culture (세포외 기질 세포 배양법에 의한 유선상피세포의 성장 및 분화 유도)

  • Paik, Kee-Joo;Yoon, Jeong-Hyun;Kim, Dong-Yeom;Jeon, Seong-Shil;Yang, Han-Suk;Kim, Nam Deuk
    • Journal of Life Science
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 1995
  • Mammary orgamoids(ductal and endbud fragments) were cultured in a complete hormone medium(CHM) with 10%FBS, estradiol, progesterone, hydrocortisone, insulin, and prolactin, Several types of colonies were observed: stellate(14$$\pm$5.5%), duct(41$\pm$5.6%), web(35$\pm$3.6%), squamous(6$\pm$2.1%), and lobuloduct(4$\pm$1.2%), Squamous colony was typical squamous metaplasia(SM) with several layers of squamous epithlia and keratin pearls. At the immunocytochemical study, casein proteins were predominantly localized near the apical surfaces of the cells or in the lumina of ductal or lobuloductal colonies. To inhibit the formation of SM, we treated organoids with all-trans retinoic acid(RA) from 10$^{-6}$ to 10$^{-17}$ M in CHM. Formation of SN was completely inhibited at 10$^{-9}$M RA in CHM. The frequency of lobuloductal colony formation was increased with the augmentation of RA concentration.

  • PDF

Growth and Differentation of Rat Mammary Epithelial Cells Cultured in Serum-free Medium

  • Kim, Dong-Yeum;Jhun, Byung-Hak;Lee, Kyung-Hee;Hong, Seung-Chul;Clifton, Kelly-H.;Kim, Nam-Deuk
    • Archives of Pharmacal Research
    • /
    • v.20 no.4
    • /
    • pp.297-305
    • /
    • 1997
  • A new serum-free defined medium was developed that supports the growth of normal rat mammary epithelial cells. Mammary organoids from the glands of female F344 rats were cultured in a serum-free medium. Monolayer culture colonies developed within a week and remained viable for months in culture. Upon subculture of one-week-old primary colonies, almost the same morphology of colonies was developed. The scrape loading/dye transfer technique showed that most of colonies that developed in a serum-free medium containing EGF, human transferrin, insulin, and hydrocortisone (basal serum-free medium, BSFM) failed to show cell-cell communication. However, colonies cultured in BSFM supplemented with prolactin, $E_2$, and progesterone (complete hormone serum-free medium, CHSFM) showed cell-cell communication at 14 days of primary culture or of subculture. By flow cytometry with FITCPNA and PE-anti-Thy-1.1 monoclonal antibody, we distinguished four RMEC subpopulations in cultures in both media: Thy-1.1+ cells, PNA+ cells, cells negative to both reagents and cells positive to both reagents. It is likely that combined prolactin, cortisol, and insulin in CHSFM stimulate terminal differentiation of clonogenic cells.

  • PDF

Induction of Differentiation of the Cultured Rat Mammary Epithelial Cells by Triterpene Acids

  • Paik, Kee-Joo;Jeon, Seong-Sill;Chung, Hae-Young;Lee, Kyung-Hee;Kim, Kyu-Won;Chung, Joon-Ki;Kim, Nam-Deuk
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.398-405
    • /
    • 1998
  • We investigated the effects of triterpene acids (TAs), ursolic acid (UA) and oleanolic acid (OA), on the induction of proliferation and differentiation of normal rat mammary epithelial cells (RMEC) or organoids cultured in Matrigel or primary culture system. To elucidate the effects, we tested their differentiation inducing activities with intercellular communication ability, cell cycle patterns, induction of apoptosis, and morphological differentiation in the three dimensional extracellular culture system. To study the changes of RMEC subpopulation in culture, the cultured cells were isolated, immunostained with peanut lectin (PNA) and anti-Thy-1.1 antibody and then analyzed with flow cytometry. Four different subpopulations, such as PNA and Thy-1.1 negative cells (B-), PNA positive cells (PNA+), Thy-1.1 positive cells (Thy-1.1+), PNA and Thy-1.1 positive cells (B+), were obtained and the size of each subpopulation was changed in culture with time in the presence of TAs. Intercellular communication was observed in culture for 7 days in TAs-treated cells, but not in culture for 4 days with scrape-loading dye transfer technique. $G_2$/M phase cells and the number of apoptotic population were increased in TAs-treated groups in cell cycle analyses. S phase fractions were reduced and the change of $G_1$ phase cells was not observed. The colonies with distinct multicelfular structures, such as stellate, ductal, webbed, squamous, lobulo-ductal colonies, were observed in Matrigel culture and the frequencies of each colony were changed in the presence of TAs. These results suggest that UA and OA have differentiation inducing effects on rat mammary epithelial cells in primary or in Matrigel culture.

  • PDF

A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab

  • Lee, Sang-Kyu;Cho, Yong-Hee;Cha, Pu-Hyeon;Yoon, Jeong-Soo;Ro, Eun Ji;Jeong, Woo-Jeong;Park, Jieun;Kim, Hyuntae;Kim, Tae Il;Min, Do Sik;Han, Gyoonhee;Choi, Kang-Yell
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.12.1-12.12
    • /
    • 2018
  • Drugs targeting the epidermal growth factor receptor (EGFR), such as cetuximab and panitumumab, have been prescribed for metastatic colorectal cancer (CRC), but patients harboring KRAS mutations are insensitive to them and do not have an alternative drug to overcome the problem. The levels of ${\beta}$-catenin, EGFR, and RAS, especially mutant KRAS, are increased in CRC patient tissues due to mutations of adenomatous polyposis coli (APC), which occur in 90% of human CRCs. The increases in these proteins by APC loss synergistically promote tumorigenesis. Therefore, we tested KYA1797K, a recently identified small molecule that degrades both ${\beta}$-catenin and Ras via $GSK3{\beta}$ activation, and its capability to suppress the cetuximab resistance of KRAS-mutated CRC cells. KYA1797K suppressed the growth of tumor xenografts induced by CRC cells as well as tumor organoids derived from CRC patients having both APC and KRAS mutations. Lowering the levels of both ${\beta}$-catenin and RAS as well as EGFR via targeting the $Wnt/{\beta}$-catenin pathway is a therapeutic strategy for controlling CRC and other types of cancer with aberrantly activated the $Wnt/{\beta}$-catenin and EGFR-RAS pathways, including those with resistance to EGFR-targeting drugs attributed to KRAS mutations.

All-trans Retinoic Acid Induced Differentiation of Rat Mammary Epithelial Cells Cultured in Serum-free Medium

  • Ki, Min-Hyo;Paik, Kee-Joo;Lee, Ji-Hyeon;Chung, Hae-Young;Lee, Kyung-Hee;Kim, Kyu-Won;Kim, Nam-Deuk
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.298-304
    • /
    • 1998
  • Retinoids are applied to not only cancer prevention but also cancer chemotherapy by stimulating differentiation of cells. We studied differentiation inducing effect of all-trans retinoic acid (ATRA) by studying proportion of high dense fractions of stem-like cells and the size of S phase fraction in cell cycle. From mammary organoids obtained from 7- to 8-week old F344 female rat mammary gland, we cultured rat mammary epithelial cells (RMEC) and treated physiological doses of $10^{-6}$, $10^{-7}$, and $10^{-8}$ M ATRA from the first day and then cultured for 4, 7, and 14 days. After that, immunostaining was performed using peanut agglutinin (PNA) and anti-Thy-1.1 monoclonal antibody (Thy-1.1) that can be used as markers of differentiation. We separated four different cell subpopulations by flow cytometry: cells negative to both reagents (B-), PNA-positive cells (PNA+), Thy-1.1-positive cells (Thy-1.1+), and cells positive to both reagents (B+). We observed continuous decreases of high dense fractions of stem-like cells (PNA+ subpopulations) for 14 days and as much decreases as high doses of ATRA, which were thought to be proportional to doses of ATRA. We labeled RMEC with bromodeoxyuridine and investigated cell cycle fractions that went through S phase. We observed a tendency of decrease of S phase fraction with time in culture, which, is thought to be related to continuous decreases of PNA+ subpopulations and inhibitory role of ATRA on cell cycle. These results suggest that physiological doses of ATRA could stimulate differentiation of RMEC and convert stem-like RMEC to differentiated cells in SFM for a relatively long period of 14 days.

  • PDF

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • Junhyoung Lee;Jimin Park;Sanghun Kim;Esther Han;Sungho Maeng;Jiyou Han
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.339-355
    • /
    • 2024
  • The pulmonary system is a highly complex system that can only be understood by integrating its functional and structural aspects. Hence, in vivo animal models are generally used for pathological studies of pulmonary diseases and the evaluation of inhalation toxicity. However, to reduce the number of animals used in experimentation and with the consideration of animal welfare, alternative methods have been extensively developed. Notably, the Organization for Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency (USEPA) have agreed to prohibit animal testing after 2030. Therefore, the latest advances in biotechnology are revolutionizing the approach to developing in vitro inhalation models. For example, lung organ-on-a-chip (OoC) and organoid models have been intensively studied alongside advancements in three-dimensional (3D) bioprinting and microfluidic systems. These modeling systems can more precisely imitate the complex biological environment compared to traditional in vivo animal experiments. This review paper addresses multiple aspects of the recent in vitro modeling systems of lung OoC and organoids. It includes discussions on the use of endothelial cells, epithelial cells, and fibroblasts composed of lung alveoli generated from pluripotent stem cells or cancer cells. Moreover, it covers lung air-liquid interface (ALI) systems, transwell membrane materials, and in silico models using artificial intelligence (AI) for the establishment and evaluation of in vitro pulmonary systems.