• Title/Summary/Keyword: Organic vegetable

Search Result 187, Processing Time 0.025 seconds

Analysis of reactive species in water activated by plasma and application to seed germination

  • Choi, Ki-Hong;Lee, Han-Ju;Park, Gyungsoon;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.162.1-162.1
    • /
    • 2015
  • The use of plasma has increased in bio-application field in recent years. Particularly, water treated by arc discharge or atmospheric pressure plasma has been actively utilized in bio-industry. In this study, we have developed a plasma activated water generating system. For this system, two kinds of plasma sources; dielectric barrier discharge (DBD) plasma and arc discharge plasma have been used. The discharge energy was calculated using the breakdown voltage and current, and the emission spectrum was measured to investigate the generated reactive species. We also analyzed the amount of reactive oxygen and nitrogen species in water using the chemical methods and nitric oxide sensor. Finally, the influence of plasma generated reactive species on the germination and growth of spinach (Spinacia oleracea) was investigated. Spinach is a green leafy vegetable that contains a large amount of various physiologically active organic compounds. However, it is characterized with a low seed germination rate.

  • PDF

Chemopreventive Effect of Quercetin, Vitamin C and Trolox Against the Organic Extract of Airborne Particulate Matter Induced Genotoxicity in A549 Human Lung Carcinoma Cells (대기부유분진추출물로 야기된 DNA 손상에 대한 Quercetin, Vitamin C 및 Trolox 의 보호효과)

  • Kim, Nam-Yee;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.51 no.4
    • /
    • pp.239-245
    • /
    • 2007
  • In order to evaluate the genotoxicity of airborne particulate matter extracted with dichloromethane (APE), the rat microsome mediated (S-9) or DNA repair enzyme treated Comet assays were performed using the single cell gel electrophoresis in A549 human lung carcinoma cells. It was found that the cells interacting with APE showed more DNA single-strand breaks relative to untreated cells. The genotoxicity of APE was increased with the treatment of S-9 mixture. Microsome mediated DNA damage was inhibited by CYP1Al inhibitor, quercetin. The APE also showed oxidative DNA damage evaluated by endonuclease III treatment. Oxidative DNA damage of APE was inhibited by antioxidants such as vita- min C and Trolox. We also found that the vegetables or fruits extract may reduce APE-induced genotoxicity by their anti- oxidant activity and CYP1A1 inhibition.

GC-MS Analysis of the Extracts from Korean Cabbage (Brassica campestris L. ssp. pekinensis ) and Its Seed

  • Hong, Eunyoung;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.3
    • /
    • pp.218-221
    • /
    • 2013
  • Korean cabbage, a member of the Brassicaceae family which also includes cauliflower, mustard, radish, and turnip plants, is a crucial leafy vegetable crop. Korean cabbage is harvested after completion of the leaf heading process and is often prepared for use in "baechu kimchi", a traditional Korean food. Many of the components in Korean cabbage are essential for proper human nutrition; these components can be divided into two groups: primary metabolites, which include carbohydrates, amino acids, fatty acids, and organic acids, and secondary metabolites such as flavonoids, carotenoids, sterols, phenolic acids, alkaloids, and glucosinolates (GSLs). Using gas chromatography-mass spectrometry, this study examined the variety of volatile compounds (including isothiocyanates) contained in Korean cabbage and its seed, which resulted in the identification of 16 and 12 volatile compounds, respectively. The primary volatile compound found in the cabbage was ethyl linoleolate (~23%), while 4,5-epithiovaleronitrile (~46%) was the primary volatile component in the seed.

Symptoms and Damages of Powdery Mildew on Leafy Lettuce Caused by Podosphaera fusca (Podosphaera fusca에 의한 상추 흰가루병의 증상과 피해)

  • Jee, Hyeong-Jin;Shim, Chang-Ki;Ryu, Kyung-Yul;Shin, Hyeon-Dong
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.294-297
    • /
    • 2006
  • Leafy lettuce(Lactuca sativa L.) is one of the most important vegetable crops in Korea, cultivated throughout the year in greenhouses. During the autumn of 2005, powdery mildew of lettuce that is a new disease caused by Podosphaera fusca occurred in several plantings grown in plastic houses near Suwon in central Korea. Further survey on commercial fields of the plant in central and southern Korea revealed its widespread occurrence and severe losses. Infections occur on upper part of mature leaves often cause leaf distortions, withering, and reduced vigor and growth. Among 184 greenhouses surveyed 121 were infested by the disease and 52 showed over 10% infection rate. Yields were greatly reduced by the disease reaching only 59% compared to healthy plants. About 60% leaves of infected plant were not marketable and fresh weight of the leaves was 73.6% compared to healthy leaves. Total yield of the greenhouses infested by the disease ranged from $100{\sim}140kg$, while it was 260 kg in a non-infested greenhouse at one time harvest. Since the disease represents a threat to safe cultivation of leafy lettuce in Korea, environmentally-friend control strategies should be urgently developed.

Effect of Spent Mushroom Compost of Pleurotus pulmonarius on Growth Performance of Four Nigerian Vegetables

  • Jonathan, Segun Gbolagade;Lawal, Muritala Mobolaji;Oyetunji, Olusola Jacob
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.164-169
    • /
    • 2011
  • Spent mushroom compost (SMC) of Pleurotus pulmonarius (an edible fungus) was used as soil conditioner for the improvement of growth of four common Nigerian vegetables (Abelmoschus esculentus, Lycopersicum esculentum, Capsicum annum and Capsicum chinense). The results of these investigations showed that the vegetables responded well to the SMC treatment. Each of them attained its best growth and gave the highest number of flowers and fruits when planted on 6 kg of depleted garden soil supplemented with 600 g of SMC. The control experiment that has the seedlings of the vegetables planted on 6 kg of depleted garden soil only, without the application of SMC, showed stunted and poor growth, with few or no flower and fruit production. A. esculentus was the best utilizer of iron utilizing 118.0 mg/kg in the SMC used. Similarly; this vegetable utilized 1.48 mg/kg of nitrogen in the SMC. The highest height in each vegetable was attained with 6 kg of depleted garden soil supplemented with 600 g of SMC. At 9 wk, A. esculentus has the mean height of 85.0 cm while these values significantly increased to 100.00 cm at 14 wk ($p{\leq}0.05$). At 9 wk, L. esculentum has the highest mean height of 65.00 cm which increased to 71.00 cm after 14 wk. It was also observed that A. esculentus has the highest mean number of fruits (9.00), followed in order by C. chinense (8.00) and L. esculentum (7.00) ($p{\leq}0.05$) while, C. annum produced the least mean number of fruits (5.00). No fruits production was seen in the control experiments. The results of these findings were discussed in relation to the usage of SMC as possible organic fertilizer for the improvement of growth of vegetables in Nigeria.

Response of Growth and Functional Components in Baby Vegetable as Affected by LEDs Source and Luminous Intensity (LEDs 광조성 및 광도가 베이비채소의 생육 및 기능성물질에 미치는 영향)

  • Yoon, Seong-Tak;Jeong, In-Ho;Kim, Young-Jung;Han, Tae-Kyu;Yu, Je-Bin;Jae, Eun-Kyung
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.549-565
    • /
    • 2015
  • This study was conducted to investigate the growth characteristics and functional materials of baby vegetables as affected by different LEDs and luminous intensity at Anseongsi, Gyeonggi Province, in 2014. Test crops were beet, chicory, spinach, red leaf lettuce, crown daisy and red mustard purchased from the seed company of Dongbu Hannong and Jinheung. Growth characteristics were measured and the content of functional materials was analyzed 40 days after seeding at plug plate. Treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity showed the highest number of leaves in five baby vegetables of beet, chicory, red leaf lettuce, crown daisy and red mustard. The highest shoot length of chicory, spinach, red leaf lettuce, crown daisy and red mustard was obtained from the treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity. Fresh weight and dry weight of all six baby vegetables were the highest in treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity. Content of chlorophyll a and chlorophyll b of spinach, red leaf lettuce and red mustard showed the highest in Fluorescent lamp at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity whereas other crops did not show definite trend under different LEDs lights and luminous intensity. The highest total content of anthocyanins and polyphenol were obtained from the treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity in all six baby vegetables. Free radical scavenging activity was highest in all six vegetable crops at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity, but it was not different significantly between LEDs. As a result, the growth and the content of functional material of baby vegetables are generally to be increased in Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity. Mixed light of Red+Blue is thought to give good effect on the growth and the content of functional material in baby vegetable crops. Because there are many differences in regard of LED lights, crop varieties, cultivation and experimental methods in their impact on the growth and functional materials of baby vegetables among researchers, it is considered that a more precise studies are needed for the crop responses to LED light and luminous intensity.

Studies on Potential utilization of Earthworm Cast as Vegetable Plant Growth Media - Effects of mixing ratios with earthworm cast in nursery soil on pepper(Capsicum annuum L.) seedling growth - (원예용 육모 상토로서의 지렁이 분립의 이용에 관한 연구 - 지령이 분립의 혼합비율이 고추묘의 생육에 미치는 영향 -)

  • Han, Junga;Jun, hajoon;Jo, Ikhwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.65-73
    • /
    • 1994
  • Earthworm cast was investigated in this study in order to domestically develop inexpensive and safe plug nursery soil. 20,30,40 and 50% of earthworm cast were added to the nursery soil as vegetable plant growth media, in which peatmoss and vermiculite constituted the rest of the soil. The effects of earthworm cast on the growth of pepper (Capsicum annuum L.) seedling were obtained as follows. 1. According to the growth stages, significant differences(p=0.001) were recorded in number of leaves, leaf area and biological dry matter yield per plant(shoor or root dry matter yield per plant). In view of mixing ratios in the nursery soil, number of leaves, leaf area and stem weight per plant showed differences significantly at 1% level and leaf weight, root weight and biological dry weight per plant at 5% level, respectively. 2. The nursery soil with earthworm cast showed increased number of leaves and leaf area per plant compared to the commercial nursery soil particularly in the later stage of this study than in the earlier stage 3. Through the total period of seedling growth, leaf weight, stem weight and root weight per plant in the nursery soil with earthworm cast were genrally higher than those in the control and this trend was apparant in the treatment of more than 40% of mixing ratio with earthworm cast. 4. Although leaf weight per plant was higher than stem weight per plant till the 3rd week, from the 4th week stem weight per plant was getting higher. In the later stage of seedling growth, the stem weight was higher in the earthworm cast mixed treatment than that in the control. 5. There was no significant difference on biological dry matter yield in the earlier stage of this study, however in the later stage, it was higher in the earthworm cast mixed treatment than that in the control.

  • PDF

A Study on Importance-Performance of Wellbeing Fusion Menu using IPA (IPA를 활용한 웰빙 퓨전 메뉴의 중요도-성취도 연구)

  • Kang, Hye-Jung;Lee, Yeon-Jung
    • Culinary science and hospitality research
    • /
    • v.16 no.2
    • /
    • pp.77-95
    • /
    • 2010
  • This study aims to analyze importance and performance factors on the quality of wellbeing fusion menu of fusion restaurants to provide helpful information for building up a detailed marketing strategy and present considerations for sales increase and more efficient business results. Importance on menu quality scored a higher level than performance on the whole in fusion restaurants. Notably, in regard to attributes of menu quality, it was found that respondents put higher stress on 'taste of food', 'sanitary of food', 'cleanliness of vessels', 'quality of menu' and 'freshness of food' than anything else. Wellbeing fusion menu which has an high intake frequency rate includes 'green vegetable noodles with black bean sauce', 'sweet pumpkin salad', 'salmon salad', and 'shrimp vegetable gratin' in that order. On the other hand, the intake frequencies of 'ovened green perilla gratin', 'pomegranate dressing tofu', 'bacon roll with glutinous rice powder', and 'pomegranate dressing bacon' were rated very low. In terms of the IPA analysis on wellbeing fusion menu quality, it was important to continuously maintain 'taste of food', 'sanitary of food', 'cleanliness of vessels', 'freshness of food', 'quality of menu', 'diet menu(low fat, low calories)', 'vegetable menu', 'nutrition of food', 'variety of menu' etc. Such items as 'price', 'distinction with existing food', and 'environment-friendly organic agriculture food material' are in need of intensive care and operation.

  • PDF

Fruit and vegetable discards preserved with sodium metabisulfite as a high-moisture ingredient in total mixed ration for ruminants: effect on in vitro ruminal fermentation and in vivo metabolism

  • Ahmadi, Farhad;Lee, Won Hee;Oh, Young-Kyoon;Park, Keunkyu;Kwak, Wan Sup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.446-455
    • /
    • 2020
  • Objective: Our recent series of laboratory- and large-scale experiments confirmed that under aerobic and anaerobic conditions, sodium metabisulfite (SMB) was effective in preserving nutrients and antioxidant capacity of highly perishable fruit and vegetable discards (FVD). Hence, the purpose of this study was to examine how partial inclusion of SMB-treated FVD in total mixed ration (TMR) influences in vitro ruminal fermentation, whole-tract digestibility, nitrogen metabolism, blood metabolites, and voluntary feed intake of sheep. Methods: The FVD were mixed thoroughly with 6 g SMB/kg wet biomass and kept outdoors under aerobic conditions for 7 days. Four TMRs including four levels of SMB-treated FVD (as-fed basis) at 0%, 10%, 20%, and 30% (equaling to 0%, 1.9%, 3.8%, and 5.7% on dry matter basis, respectively), were prepared as replacement for corn grain. The ruminal fermentation metabolites were studied using an in vitro gas production test. Four mature male Corriedale sheep were assigned at random to the 4 diets for two separate sub-experiments; i) digestibility trial with four 21-d periods, and ii) voluntary feed intake trial with four 28-d periods. Results: Inclusion of SMB-treated FVD in the TMR tended to quadratically increase partitioning factor. No effect was seen on total-tract digestibility of organic matter, ether extract, crude protein, and acid detergent fiber, except for neutral detergent fiber digestibility that tended to linearly increase with increasing SMB-treated FVD in the TMR. The progressive increase of FVD preserved with SMB in the diet had no effect on nitrogen metabolism. Treatment had no effect on serum antioxidant capacity and blood metabolites assayed. Voluntary feed intake was not impaired by inclusion of SMB-treated FVD in the TMR. Conclusion: It appears that FVD preserved with SMB can be safely incorporated into TMR as replacement of corn grain without impairment of nutrient metabolism and feed intake.

Growth responses of New Zealand Spinach [Tetragonia tetragonoides (Pall.) Kuntze] to different soil texture and salinity (신규 채소작물용 번행초의 토성 및 염도에 대한 생육 반응)

  • Kim, Sung-Ki;Kim, In-Kyung;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.631-639
    • /
    • 2011
  • This research was conducted to investigate potential use of New Zealand spinach (Tetragonia tetragonoides) as a new vegetable crop which will be cultivating in salt-affected soils including reclaimed land. Traditionally New Zealand spinach has been studied to explore functional compound or salt removing potential. To cultivate the crop species in the salt-affected soil widely, it is essential to obtain salt and soil texture responses under the controlled environment. Fifty nine New Zealand spinach ecotypes native to Korean peninsula first collected over seashore areas, and primitive habitat soil environment was evaluated by analyzing soil chemical properties from 32 locations. Different textures of sandy, silt loam, and sandy loam soils were prepared from nearby sources of sea shore, upland and paddy soils, respectively. Target salinity levels of 16.0 dS/m, 27.5 dS/m, 39.9 dS/m, and 52.4 dS/m in electrical conductivity (ECw) were achieved by diluting of 25, 50, 75, 100% (v/v) sea water to tap water (control, 0.6 dS/m), respectively. Various measurements responding to soil texture and irrigation salinity included plant height, root length, fresh weight (FW), dry weight (DW), leaf parameters (leaf number, leaf length, leaf width), lateral branching, and inorganic ion content. was found to adapt to diverse habitats ranging various soil chemical properties including soil pH, organic matter, exchangeable bases, EC, and cation exchange capacity (CEC) in Korea. Responding to soil texture, New Zealand spinach grew better in silt loam and sandy loam soil than in sandy soil. Higher yield (FW and DW) seemed to be associated with branch number (r=0.99 and 0.99, respectively), followed by plant height (r=0.94 and 0.97, respectively) and leaf number (r=0.89 and 0.84, respectively). Plant height, FW, and DW of the New Zealand spinach accessions were decreased with increasing irrigation salinity, while root length was not significantly different compared to control. Based on previous report, more narrow spectrum of salinity range (up to 16 dS/m) needs to be further studied in order to obtain more accurate salinity responses of the plant. As expected, leaf Na content was increased significantly with increasing salinity, while K and Ca contents decreased. Growth responses to soil texture and irrigation salinity implied the potential use of New Zealand spinach as a leafy vegetable in salt-affected soil constructed with silt loam or sandy loam soils.