• Title/Summary/Keyword: Organic vapor

Search Result 761, Processing Time 0.028 seconds

The characteristics of the electroluminescent devices using new organic materials, PRL-401, 403 (새로운 발광물질인 PRL-401, 403을 사용한 EL소자의 특성분석)

  • Kim, Jun-Ho;Lee, Sang-Pil;Lee, Kwang-Sup;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1742-1744
    • /
    • 2000
  • Organic materials have been considered for the fabrication of practical electroluminescent(EL) devices because a large number of organic materials are known to have extremely high fluorescence quantum efficiencies in the visible spectrum. In this study, electroluminescent devices are constructed using novel organic materials PRL-401, PRL-403 as the emitting elements. The devices have a triple-layer structure of organic thin films, prepared by vacuum vapor deposition. Greenish yellow electroluminescent emission is observed. The maximum luminances are over 1000 $cd/m^2$ and the turn-on voltages are about 13 V.

  • PDF

Fabrication of Single Crystal Poly (3,4-ethylenedioxythiophene) Nanowire Arrays by Vapor Phase Polymerization with Liquid-bridge-mediated Nanotransfer Molding

  • Lee, Gi-Seok;Jo, Bo-Ram;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.372-372
    • /
    • 2012
  • We have studied a fabrication of Poly (3,4-ethylenedioxythiophene) (PEDOT) wire arrays and structures with various feature sizes from hundreds micrometers to tens nanometers. PEDOT is well-known as a conducting material, can be grown by a vapor pressure polymerization (VPP) method. The VPP technique is a bottom-up processing method that utilizes the organic arrangement of macromolecules to easily produce ordered aggregates. Also, liquid-bridge-mediated nanotransfer molding (LB-nTM), which was reported as a new direct patterning method recently, is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. The PEDOT nanowires grown by VPP method and transferred on a substrate to use LB-nTM method have been investigated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and electrical properties.

  • PDF

The Molecular Orientation of PVDF Organic Thin Film by Vapor Deposition Method (진공증착법을 이용한 PVDF 유기박막의 분자배향)

  • 박수홍;이선우;임응춘;최충석;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.297-300
    • /
    • 1997
  • In this study, The PVDF thin film was fabricated on the one method of dry-process the physical vapor deposition method, applied electric field, and evaporation control in $\beta$-PVDF thin film preparation. A study on the electric-field-phase change of PVDF thin film in physical vapor deposition using the polymer deposition apparatus which are manufactured for oneself. In the analysis of Fourier-Transform Infrared spectra, according to increasing of electric field intensity, the 510$cm^{-1}$ / peak and 1273$cm^{-1}$ / peak which are showed in $\beta$-PVDF increase, on the contrary the 530$cm^{-1}$ / peak and 977$cm^{-1}$ / peak which are showed in $\alpha$-PVDF decrease.

  • PDF

Fabrication of Single Crystal Poly(3,4-ethylenedioxythiophene) Nanowire Arrays

  • Cho, Bo-Ram;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.537-537
    • /
    • 2012
  • We have studied a fabrication of vapor phase polymerized Poly(3,4-ethylenedioxythiophene) (PEDOT) nanowire arrays for the first time. The vapor-phase polymerization (VPP) technique is a bottom-up processing method that utilizes the organic arrangement of macromolecules to easily produce ordered aggregates, including on the nanoscale, or prepare thin films of self-assembled molecules, micropatterns, or modified microstructures of pure conducting polymers. Also, liquid-bridge-mediated nanotransfer molding (LB-nTM), which was reported as a new direct patterning method recently, is for the arrayed formation of two- or three-dimensional structures with feature sizes as small as tens of nanometers over large areas up to 4 inches across and is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. The PEDOT nanowires grown by VPP method and transferred on a substrate to use LB-nTM method have been fabricated to single crystal PEDOT nanowires investigated Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and electrical properties.

  • PDF

Synthesis and Characteristics of FePt Nanopowder by Chemical Vapor Condensation Process

  • Yu, Ji-Hun;Lee, Dong-Won;Kim, Byoung-Kee;Jang, Tae-Suk
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1196-1197
    • /
    • 2006
  • FePt binary-alloy nanopowder has been successfully synthesized by chemical vapor condensation process with two metal organic precursors, i.e., iron pentacarbonyl and platinum acetylacetonate. Average particle size of the powder was less than 50 nm with very narrow size distribution, revealing high dispersion capability. Characteristics of the powder could be controlled by changing process parameters such as reaction temperature, chamber pressure, as well as gas flow rate. Magnetic properties of the synthesized FePt nanopowder were investigated and analyzed in terms of the powder characteristics.

  • PDF

Preparation of Nanosized WO3 Powder by Chemical Vapor Condensation Process

  • Kim, Jin-Chun;Kim, Byoung-Kee
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.186-189
    • /
    • 2003
  • A chemical vapor condensation (CVC) process using the pyrolysis of metal-organic precursors was applied to produce the nanosized $WO_3$ powders. Morphology and phase changes of the synthesized $WO_3$ powder as a function of CVC parameters were investigated by XRD, BET and TEM. The agglomerated nanosized monoclinic $WO_3$ powders with nearly spherical shape and 10-38 nm in mean diameter could be obtained. Conditions to produce the $WO_3$ nanopowders are presented in this paper.

Fabrication of epitaxial ZnO layers on MOCVD-ZnO/(01-12) sapphire by chemical vapor transport

  • Hong, Sang-Hwui;Kato, Kenichi;Mimura, Kouji;Uchikoshi, Masahito;Abe, Seishi;Isshiki, Minoru
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.700-702
    • /
    • 2009
  • We present the epitaxial growth of high-quality ZnO layers by chemical vapor transport (CVT) technique on (01-12) sapphire with a ZnO buffer layer growth by metal-organic chemical vapor deposition (MOCVD). The surface of the grown ZnO epitaxial layers has atomically flats and the RMS is 0.11 nm. PL spectrum of as-grown samples exhibits two emissions originated by interactions between photon and free excitons.

  • PDF

Separation of VOCs from nitrogen stream using segmented urethane block copolymer membranes with different soft segments

  • Lee, Young-Moo;Park, Ho-Bum
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.23-26
    • /
    • 1999
  • Urethane block copolymers, containing soft segments such as polydimethylsiloxane (PDMS), polytertramethylene glycol(PTMG) and PEO-PPO-PEO (Poloxamer) block copolymer, were synthesized and examined for th vapor- phase separation of toluene from nitrogen stream by using vapor permeation equipment. Generally permeabilities of PTMG and PDMS based urethane membranes were higher than those of Poloxamer based urethane membranes. Organic vapor permeability in the PDMS and PTMG soft segment urethane membranes were greater than those measured in the Poloxamer films, due to more polymer swelling. The membranes performed best with toluene, with toluene/dry N2 seletivities ranging from 120~200 and permeablilities as high as 23$\times$10-9 mol/m2sPa for saturated toluene feeds at 23$^{\circ}C$.

  • PDF

TPS Analysis of Various Metal Plates for Belt Source Evaporation in AMOLED Manufacturing

  • Hwang, Chang-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1603-1606
    • /
    • 2007
  • The TPS (Temperature Programmed Sublimation) technology has been developed to monitor the plane evaporation of the organic films and introduced in SID2007, P53.[4] The Alq3 organic film is deposited on various metal surface such as Cu, Ti, Invar, STS to sublimate. The TPS signal confirms that the Alq3 film consists of nano scale film phase and bulk phase on all the metal plates. The sublimation temperature of the Alq3 film was much lower ($130^{\circ}C$) than the vapor temperature ($265^{\circ}$) of the Alq3 powder.

  • PDF