• Title/Summary/Keyword: Organic thin film

Search Result 1,233, Processing Time 0.04 seconds

TPS Analysis of NPB organic thin film for Belt Source Evaporation in AMOLED Manufacturing

  • Hwang, Chang-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1600-1602
    • /
    • 2007
  • TPS (Temperature Programmed Sublimation) technology is known to research for the plane evaporation of the organic film.[5] Using TPS technology, the plane source evaporation of NPB organic film has been studied for the first time. The NPB organic film consists of nano scale film phase and bulk phase on a substrate. The 400 ${\AA}$ in film phase thickness of NPB sublimates at the $175^{\circ}$ of the Ta made metal plate. It was proved that the sublimation temperature of the organic film has much lower than that of the organic powder. ($130^{\circ}$ is lower for Alq3 and $90^{\circ}$ is lower for NPB.)

  • PDF

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Electrical Effects in Organic Thin-Film Transistors Using Polymerized Gate Insulators by Vapor Deposition Polymerization (VDP)

  • Lee, Dong-Hyun;Pyo, Sang-Woo;Koo, Ja-Ryong;Kim, Jun-Ho;Shim, Jae-Hoon;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.661-664
    • /
    • 2004
  • In this paper, it was demonstrated that the organic thin film transistors with the organic gate insulators were fabricated by vapor deposition polymerization (VDP) processing. The configuration of OTFTs was a staggered-inverted top-contact structure and gate dielectric layer was deposited with 0.45 ${\mu}m$ thickness. In order to form polyimide as a gate insulator, VDP process was also introduced instead of spin-coating process. Polyimide film was respectively co-deposited with different materials. One was from a 4,4'-oxydiphthalic anhydride (ODPA) and 4, 4'-oxydianiline (ODA) and the other was from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and ODA. And it was also cured at 150 $^{\circ}C$ for 1 hour followed by 200 $^{\circ}C$ for 1 hour. Electrical characteristics of the organic thin-film transistors were detailed comparisons between the ODPA-ODA and the 6FDA-ODA which were used as gate insulator.

  • PDF

Fabrication of Organic Thin-Film Transistor Using Vapor Deposition Polymerization Method (Vapor Deposition Polymerization 방법을 이용한 유기 박막 트렌지스터의 제작)

  • 표상우;김준호;김정수;심재훈;김영관
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.190-193
    • /
    • 2002
  • The processing technology of organic thin-film transistors (Ons) performances have improved fur the last decade. Gate insulator layer has generally used inorganic layer, such as silicon oxide which has properties of a low electrical conductivity and a high breakdown field. However, inorganic insulating layers, which are formed at high temperature, may affect other layers termed on a substrate through preceding processes. On the other hand, organic insulating layers, which are formed at low temperature, dose not affect pre-process. Known wet-processing methods for fabricating organic insulating layers include a spin coating, dipping and Langmuir-Blodgett film processes. In this paper, we propose the new dry-processing method of organic gate dielectric film in field-effect transistors. Vapor deposition polymerization (VDP) that is mainly used to the conducting polymers is introduced to form the gate dielectric. This method is appropriate to mass production in various end-user applications, for example, flat panel displays, because it has the advantages of shadow mask patterning and in-situ dry process with flexible low-cost large area displays. Also we fabricated four by four active pixels with all-organic thin-film transistors and phosphorescent organic light emitting devices.

  • PDF

A Study on the Electrical Characteristics of Organic Thin Film Transistor using Photoacryl as Gate Dielectric Layer (Photoacryl을 게이트 절연층으로 사용한 유기 박막트랜지스터의 전기적 특성에 관한 연구)

  • 김윤명;표상우;김준호;신재훈;김영관;김정수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.110-118
    • /
    • 2002
  • Organic thin film transitors(OTFT) are of interest for use in broad area electronic applications. And recently organic electroluminescent devices(OELD) have been intensively investigated for using in full-color flat-panel display. We have fabricated inverted-staggered structure OTFTs at lower temperature using the fused-ring polycyclic aromatic hydrocarbon pentacene as the active eletronic material and photoacryl as the organic gate insulator. The field effect mobility is 0.039∼0.17 ㎠/Vs, on-off current ratio is 10$\^$6/, and threshold voltage is -7V. And here we report the study of driving emitting, Ir(ppy)$_3$, phosphorescent OELD with all organic thin film transistor and investigated its electrical characteristics. The OELD with a structure of ITO/TPD/8% Ir(ooy)$_3$ doped in BCP/BCP/Alq$_3$/Li:Al/Al and OTFT with a structure of inverted-stagged Al(gate electrode)/photoacry(gate insulator)/pentacene(p-type organic semiconductor)/ Au(source-drain electrode) were fabricated on the ITP patterned glass substrate. The electrical characteristics are turn-on voltage of -10V, and maximum luminance of about 90 cd/㎡. Device characteristics were quite different with that of only OELD.

Reliability Evaluation of Atomic layer Deposited Polymer / Al2O3 Multilayer Film for Encapsulation and Barrier of OLEDs in High Humidity and Temperature Environments (OLED Barrier와 Encapsulation을 위한 원자층 증착 Polymer / Al2O3 다층 필름의 온습도 신뢰도 평가 분석)

  • Lee, Sayah;Song, Yoon Seog;Kim, Hyun;Ryu, Sang Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.1-4
    • /
    • 2017
  • Encapsulation of organic based devices is essential issue due to easy deterioration of organic material by water vapor. Atomic layer deposition (ALD) is a promising solution because of its low temperature deposition and quality of the deposited film. Moisture permeation has a mechanism to pass through defects, Thin Film Encapsulation using inorganic / organic / inorganic hybrid film has been used as promising technology. $Al_2O_3$ / Polymer / $Al_2O_3$ multilayer film has shown excellent environmental protection characteristics despite of thin thicknesses of the films.

  • PDF

Characteristics of Carbon-Doped Mo Thin Films for the Application in Organic Thin Film Transistor (유기박막트랜지스터 응용을 위한 탄소가 도핑된 몰리브덴 박막의 특성)

  • Dong Hyun Kim;Yong Seob Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.588-593
    • /
    • 2023
  • The advantage of OTFT technology is that large-area circuits can be manufactured on flexible substrates using a low-cost solution process such as inkjet printing. Compared to silicon-based inorganic semiconductor processes, the process temperature is lower and the process time is shorter, so it can be widely applied to fields that do not require high electron mobility. Materials that have utility as electrode materials include carbon that can be solution-processed, transparent carbon thin films, and metallic nanoparticles, etc. are being studied. Recently, a technology has been developed to facilitate charge injection by coating the surface of the Al electrode with solution-processable titanium oxide (TiOx), which can greatly improve the performance of OTFT. In order to commercialize OTFT technology, an appropriate method is to use a complementary circuit with excellent reliability and stability. For this, insulators and channel semiconductors using organic materials must have stability in the air. In this study, carbon-doped Mo (MoC) thin films were fabricated with different graphite target power densities via unbalanced magnetron sputtering (UBM). The influence of graphite target power density on the structural, surface area, physical, and electrical properties of MoC films was investigated. MoC thin films deposited by the unbalanced magnetron sputtering method exhibited a smooth and uniform surface. However, as the graphite target power density increased, the rms surface roughness of the MoC film increased, and the hardness and elastic modulus of the MoC thin film increased. Additionally, as the graphite target power density increased, the resistivity value of the MoC film increased. In the performance of an organic thin film transistor using a MoC gate electrode, the carrier mobility, threshold voltage, and drain current on/off ratio (Ion/Ioff) showed 0.15 cm2/V·s, -5.6 V, and 7.5×104, respectively.

Study on the Atomic Layer Deposition System and Process of the MgO Thin Layer for the Thin Film Encapsulation of OLED (OLED의 Thin Film Encapsulation을 위한 MgO 박막의 원자층 증착 장치 및 공정에 관한 연구)

  • Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.22-26
    • /
    • 2021
  • Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation in the organic light emitting diodes (OLED). Of those, a laminated structure of Al2O3 and MgO were applied to provide efficient barrier performance for increasing the stability of devices in air. Atomic layer deposition (ALD) method is known as the most promising technology for making the laminated Al2O3/MgO and is used to realize a thin film encapsulation technology in organic light-emitting diodes. Atomic layer deposited inorganic films have superior barrier performance and have advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the control system of the MgCP2 precursor for the atomic layer deposition of MgO was established in order to deposit the MgO layer stably by the injection time of second level and the stable heating temperature. The deposition rate was obtained stably to be from 4 to 10 Å/cycle using the injection pulse times ranging from 3 to 12 sec and a substrate temperature ranging from 80 to 150 ℃.

Fabrication and Characteristics of Indium Tin Oxide Films on Polycarbonates CR39 Substrate for OTFTs

  • Kwon, Sung-Yeol
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.232-235
    • /
    • 2007
  • Indium tin oxide (ITO) films were deposited on polycarbonate CR39 substrate using DC magnetron sputtering. ITO thin films were deposited at room temperature because glass-transition temperature of CR39 substrate is $130^{circ}C$ ITO thin films are used as bottom and top electrodes and for organic thin film transparent transistor (OTFT). The electrodes electrical properties of ITO thin films and their optical transparency properties in the visible wavelength range (300-800 nm) strongly depend on the volume of oxygen percent. The optimum resistivity and transparency of ITO thin film electrode was achieved with a 75 W plasma power, 10 % volume of oxygen and a 27 nm/min deposition rate. Above 85% transparency in the visible wavelength range (300-800 nm) was measured without post annealing process, and resistivity as low as $9.83{\times}^{TM}10^{-4}{\Omega}$ cm was measured at thickness of 300 nm.

Interface Charateristics of Plasma co-Polymerized Insulating Film/Pentacene Semiconductor Film (플라즈마 공중합 고분자 절연막과 펜타센 반도체막의 계면특성)

  • Shin, Paik-Kyun;Lim, H.C.;Yuk, J.H.;Park, J.K.;Jo, G.S.;Nam, K.Y.;Park, J.K.;Kim, Y.W.;Chung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1349_1350
    • /
    • 2009
  • Thin films of pp(ST-Co-VA) were fabricated by plasma deposition polymerization (PVDPM) technique. Properties of the plasma polymerized pp(ST-Co-VA) thin films were investigated for application to semiconductor device as insulator. Thickness, dielectric property, composition of the pp(ST-Co-VA) thin films were investigated considering the relationship with preparation condition such as gas pressure and deposition time. In order to verify the possibility of application to organic thin film transistor, a pentacene thin film was deposited on the pp(ST-Co-VA) insulator by vacuum thermal evaporation technique. Crystalline property of the pentacene thin film was investigated by XRD and SEM, FT-IR. Surface properties at the pp(ST-Co-VA)/pentacene interface was investigated by contact angle measurement. The pp(ST-Co-VA) thin film showed a high-k (k=4.6) and good interface characteristic with pentacene semiconducting layer, which indicates that it would be a promising material for organic thin film transistor (OTFT) application.

  • PDF